

Content Weight	ing			
Training Adaptations Topic Areas	Total	AP	AN	RE
Physiology	2	0	0	2
Neuromuscular Anatomy and Physiology	2	1	0	1
Describe Physiological Adaptations to Exercise	6	4	0	2
Total	10	5	0	5
			every	one str NSC/

Fiber Type Characteristics					
Characteristic	Туре І	Type IIa	Type IIx		
Motor neuron size	Small	Large	Large		
Contraction speed	Slow	Fast	Fast		
Fatigue resistance	High	Intermediate/Low	Low		
Force production	Low	Intermediate	High		
Endurance	High	Intermediate/Low	Low		
Capillary density	High	Intermediate	Low		
Myoglobin content	High	Low	Low		
Mitochondria size/density	High	Intermediate	Low		
Fiber diameter	Small	Intermediate	Large		
Color	Red	White/Red	White		
	0		everyone stro NSCA		

Anabolic Hormones	Physiological Action
Growth Hormone	Stimulates IGF-1, protein synthesis, growth, and metabolism
Testosterone	Stimulates growth, † in protein anabolism, development of male sex characteristics
Insulin-like growth factors (IGF)	Increase protein synthesis in cells
Insulin	Stores glycogen and promotes glucose entry into cells, involved in protein synthesis
Catecholamines	† cardiac output (stimulate the central nervous system and peripheral vasodilators), blood sugar and glycogen breakdown; fat metabolism; stimulate anabolic response
Catabolic Hormones	Physiological Action
Glucocorticoids (cortisol)	Stimulates proteins → carb conversion; maintains normal blood suga
Glucagon	Increases blood glucose levels

Endocrine Adaptations

• Acute

- ↑ testosterone, growth hormone (GH),
- catecholamines, and cortisol
- Magnitude depends on the workout variablesWhy does cortisol increase?
- IGF and GH; insulin
- Upregulation of anabolic hormone receptors
- Chronic

- ↑ GH response to an acute exercise session
- Resistance training does not appear to increase

10

everyone stronger NSCA.com

resting hormonal levels

Module 2.0 - 7

Topics

- Basic structure and function of the cardiovascular system
- Acute and chronic responses of the cardiovascular system to training
- Basic structure and function of the respiratory system
- Responses of the respiratory and endocrine systems to training

everyone strong NSCA.co

Acute Cardiovascular Response

Variable	Cardiovascular Response: Acute (single) Session				
, and the	Resistance Training	Aerobic Training			
Heart Rate	† (variable)	t			
Blood Pressure	ttt	t			
Systolic Blood Pressure	ttt	t			
Diastolic Blood Pressure	t	Resting level or slight 1			
Cardiac Output (heart rate x stroke volume)	t	t			
Stroke Volume	t	t			
2	0				

Variable	Cardiovascular A	daptations: Resting
	Resistance Training	Aerobic Training
Blood Pressure	Ļ	#
Heart Rate	Ļ	11
Cardiac Output (heart rate x stroke volume)	t	111
Stroke Volume	t	tt
Left Ventricle	† ventricular wall thickness	↑ left ventricular chamber volume and wall thickness

Endocrine Responses: Aerobic

- Catecholamines
 - Increase with high-intensity training
 - Decrease with submaximal/low-intensity training
- Cortisol
 - Increases, especially with high-volume running

Õ

Causes protein degradation

everyone stronger NSCA.com

Connective Tissues

- Bones
 - Basis of human movement and internal organ protection
 - Cartilage is found on the ends of bone and provides a smooth articulating surface, absorbs shock, and aids in the attachment of connective tissue to the skeleton
- Tendons
 Connect muscles to bone and are inelastic
- Ligaments
 - Connect bone to bone and contain elastin (elastic properties)

0

everyone stronger NSCA.com

Fascia

Increasing Bone Mineral Density

• Principles

NSCA

- Specificity and exercise selection
 - Only the specific skeletal regions that experience mechanical loading undergo adaptation
 - Select structural exercises that load specific regions of the skeleton at a variety of angles
- Progressive overload
 - Minimal essential strain (MES); 1/10 force required to fracture a bone

everyone stronger NSCA.com

• Progressively increase load to meet the new MES

- Gluconeogenesis: Glucose is created from another substance
- Accumulation signifies the onset of anaerobic energy metabolism

 Muscular fatigue is most likely a result of H⁺ accumulation from ATP hydrolysis, not lactate

8

everyone stronger NSCA.com

	Effects of	Duratio	n and Intensity	
	Duration	Intensity*	Primary System	
	0-6 s	Extremely High	Phosphagen	
	6-30 s	Very High	Phosphagen and Fast Glycolysis	
	30 s-2 min	High	Fast Glycolysis	
	2-3 min	Moderate	Slow Glycolysis and Oxidative	
	>3 min	Low	Oxidative	
	*Intensity dict	ates duration and p	orimary energy system used	
•	NISCA Katoral (terneti and conditionen absociation	0	everyone stron NSCA.c	ger :om

	Work-to-Re	est Ratio)
% Max Power	Primary System	Typical Exercise Times	Work-to-Rest Ratio
90-100%	Phosphagen	5-10 s	1:12 to 1:20
75-90%	Fast Glycolysis	15-30 s	1:3 to 1:5
30-75%	Slow Glycolysis	1-3 min	1:3 to 1:4
20-30%	Oxidative	>3 min	1:1 to 1:3
	0		everyone stronge NSCA.com

Topics

- Basic principles of biomechanics
- Kinematic laws and principles of movement
- Kinetic laws and principles of movement
- Muscle actions and force-velocity relationship

• Application of biomechanics to exercise

0

everyone stronger NSCA.com

Content Weigh	ting	5		
Training Adaptations Topic Areas	Total	AP	AN	RE
Anatomical, Physiological, and Biomechanical Differences	1	1	0	0
Identify Environmental Concerns	3	3	0	0
Total	4	4	0	0
			every	one stre NSCA

	Actual Air Temperature (° F)								
Wind Speed (mph)	40°	30°	20°	10°	٥°	-10°	-20°	-30°	-40°
10	34	21	9	-4	-16	-28	-41	-53	-66
20	30	17	4	-9	-22	-35	-48	-61	-74
30	28	15	1	-12	-26	-39	-53	-67	-80
40	27	13	-1	-15	-29	-43	-57	-71	-84
50	26	12	-3	-17	-31	-45	-60	-74	-88
60	25	10	-4	-19	-33	-48	-62	-76	-91
	Frostbite Times:								
	30) minute	6	10 min	utes	5 n	ninutes		

	Types of Heat Illness				
	Heat Cramps				
Symptoms	Muscle twitching, cramping, spasms in legs, arms, and abdomen				
Treatments	Put the tactical athlete in a shaded area, provide water/electrolytes, monitor status				
	Heat Exhaustion (requires medical attention)				
Symptoms	Excessive thirst, fatigue, lack of coordination, increased sweating, cold/wet skin, dizziness, and/or confusion				
Treatments	Same as cramps; apply cold water to head and body, call for medical attention				
	Heat Stroke (medical emergency, call 9-1-1)				
Symptoms	No sweating, hot/dry skin, rapid pulse, rapid breathing, seizure, dizziness and/or confusion, loss of consciousness				
Treatments	Same as exhaustion				
	ni Ma Locursus everyone stronger NSCA.com				

	Temperature/H	umidity Limits	
	Relative Humidity (%)	Temperature Limit	
	0	95°F (35°C)	
	1-20	90°F (32°C)	
	21-50	85°F (29°C)	
	51-90	80°F (27°C)	
	91-100	75°F (24°C)	
n NBC		evervo	nestr

everyone stronger NSCA.com

Review: Altitude

- Physiological effects
 - Decreased VO₂max and aerobic performance
- Training considerations
 - Ascend slowly

CA.

- Maintain hydration
- Avoid overexertion in the initial days
- Adaptations are lost after 30 days at sea level

