October 2018 Strength and Conditioning Journal (40.5) CEU Quiz
A Tactical Periodization Approach for Rugby Union

1. How are skills best learned?
 A. combined in complex situations
 B. in isolation before other abilities
 C. progressing from specific to general

2. Which of the following is recommend for a game model?
 A. It must be firm.
 B. It must be adopted.
 C. It must be simple.

3. Why is contact skills training most appropriately performed in the middle of the training week for rugby?
 A. It allows for maximum recovery from the previous match.
 B. Maximal muscular strength is developed.
 C. A greater work capacity is possible during practice.

4. What type of goals does nested planning incorporate?
 A. micro-associated
 B. meso-associated
 C. macro-associated

5. Which of the following skill sets is most important during the defense phase?
 A. line speed
 B. work capacity
 C. efficient handling

6. What type of drills are recommended to develop relative velocity for rugby union?
 A. plyometric
 B. skill-based
 C. linear speed
7. Which of the following is part of a vertical integration approach to physical training?
 A. Any physical fitness component is emphasized only once per week.
 B. Strength training is completed at least two times per week.
 C. Complete rest days occur every other day.

8. Where in the training week is contact skills training recommended?
 A. beginning
 B. middle
 C. end

9. Which of the following roles is shared between the tactical/technical coach and the strength and conditioning coach?
 A. performance stabilization
 B. shared mental model
 C. periodization

10. How long should work intervals last during a contact skills session?
 A. 30-45 seconds
 B. 1-2 minutes
 C. 3 minutes
A Tactical Periodization Approach for Rugby Union

Jason C. Tee, PhD, Michael Ashford, MSc, and David Piggott, PhD
Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, West Yorkshire, United Kingdom

ABSTRACT

The concept of tactical periodization has been popularized by a number of successful, high-profile soccer coaches. More recently, reports have indicated that tactical periodization approaches are being used within elite rugby union. However, few reports currently exist, and resources for coaches interested in using a tactical periodization approach are limited. This article aims to demonstrate how tactical periodization can be applied in rugby union to help coordinate long-term planning, improve the specificity of training, and prepare players more effectively for competition.

INTRODUCTION

Tactical periodization (TP) is a holistic approach to the training and preparation of soccer teams that originated in the work of the Portuguese academic and soccer coach, Victor Frade (29). A key tenet of TP is that training should never separate the physical, tactical, technical, and mental elements of preparation (12). In particular, physical preparation should not be isolated and trained independently; it should integrate with the mental, technical, and tactical training. As Tamarit (41) suggests, any physical or technical action has a tactical intention.

A number of successful contemporary soccer coaches—including Jose Mourinho, Andre Villas-Boas, Jose Peseiro, and Carlos Queiroz—have reportedly adopted TP methodology (7). Recently, it has emerged that elements of the TP approach have been adopted for the training of international rugby players by Eddie Jones, England’s head coach (25). Despite the emergence of a few translated books and papers (e.g., Tamarit (41)), TP has not yet been described in any detail in the English-speaking world. This article therefore aims to introduce the methodology of TP and illustrate its potential adaptation in rugby union, with the help of examples from our own professional practice as coaches and academics.

It is important to acknowledge at the outset that physical and skill development is most successful when it progresses from general to specific, and that skills are best learned in isolation before being linked and combined in complex sport-specific situations (5). As such, the uniform application of TP at all levels of a sport is not recommended. However, for athletes who are already accomplished in the physical and technical skill requirements of their particular sport, TP may offer a number of performance benefits as a result of improved team tactical coordination.

Rugby union is a field-based team sport that consists of intermittent bouts of high-intensity contact (tackles, scrums, rucks, mauls) and acceleration/sprint events, interspersed with lower intensity bouts of walking and jogging (14). The prelusory goal of the game is to outscore the opposition by either grounding the ball over the opposition’s try line or kicking the ball between the opposition’s goal posts (45). Teams attempt to achieve these goals (and prevent the opposition from achieving these goals) through tactical maneuvers designed to gain territory and exploit space; and as a result, the game is complex and highly unpredictable in nature (33). Every game scenario creates a different “tactical context,” which requires appropriate combinations of technical, physical, and psychological capacities to solve performance problems (32). Effective performers regularly select appropriate actions in response to different game scenarios. This “tactical awareness” is a key discriminator of success within rugby, and as such, the solving of tactical problems and the acquisition of tactical abilities must be at the core of all training activities (31).

It is the coach’s role to generate a tactical approach that allows players to anticipate opposition actions, identify...
The game model is similar to the concept of a “shared mental model” as explored by Richards et al. (36,37). In constructing a game model, coaches specify the main tactical principles that the players should adhere to during each moment of the game (29). The game model allows coaches to communicate a “system” or “way of playing” to the playing group.

Development of a game model follows a characteristic process. Initially, it is constructed as the coach’s mental model of how the game should be played, or what Richards et al. (36) call the “Alpha version.” This “mental model” is developed through their understanding of the game, incorporating knowledge of his or her own players’ abilities and limitations, an understanding of competition demands and of opponent’s strengths and weaknesses. A mental model constructed in this manner provides a “performance vision” that allows the coach to communicate the ideal tactical approach in each moment of the game to his or her players (36,37).

The performance vision provides a clear idea of the technical, physical, and psychological demands that will be placed on the players in the execution of the game model. This allows technical/tactical and strength and conditioning (S&C) coaches to clearly define the requirements of the chosen way of playing and determine the sport-specific skill set required, and hence the curriculum that should be followed (36). In a S&C context, this aligns with the well-documented process of “needs analysis” (30) but increases specificity by considering the team’s intended style of play.

After the creation and articulation of the performance vision, this vision is then shared with the players, where the responsibility for its further development and operationalization becomes collaborative between the players and the coach. This empowers the players to identify key cues and developmental factors in the development of the tactical approach (36). In doing so, the mental model transitions from being the coach’s construct to a “shared mental model” between coaches and players, or what Richards et al. (36) call a “Beta version.” The shared mental model provides a common framework and principles within which players and coaches have a shared tactical understanding. It must be stressed that this approach is not intended to constrain behavior, nor prescribe tactical solutions, but allow players the freedom to be creative and make decisions within a framework of play (36). Frade (cited in Martins (29)) suggests that tactical solutions to a game should be “born in the player’s mind first,” stressing the importance of developing tactics between coaches and players collaboratively.

PRINCIPLES OF PLAY

Under the framework of TP, each moment of the game has a characteristic structure that presents the team with a performance problem—how best to achieve the team’s tactical goal for that moment of the game within the constraints presented by the opposition. Because of the complex nature of sport, no two moments of play will
ever be exactly identical, and it is impossible to practice for every scenario players will experience on the field. To reduce this complexity, teams may apply a set of principles and sub-principles to guide the tactical responses (29). These principles and sub-principles provide a sort of heuristic to guide team responses in the chaotic environment. Consequently, this requires a hierarchy of principles and sub-principles to guide behavior within each moment of the game (Figure 2).

PLANNING

Implementing TP requires exceptional planning to “operationalize” team tactics through the systematic repetition and progression of training goals. Nested planning (1) refers to shaping learning toward a set of macro-associated (long-term) goals and aligning different areas of learning and development to specified time frames. The different moments of the game and the principles that underpin them mean that a range of learning activities have to be completed to meet the set objectives. The coaching plan needs to ensure that sufficient learning opportunities are provided around the principles of play for the various moments of the game. In addition, planning must ensure the necessary development of required technical skills, physical abilities and mental attributes. As such, planning needs to progress along 2 temporal levels: (a) short-term progression from game to game that needs to be aligned with (b) medium- and long-term progression over the course of the season or multiple seasons. This nested-planning approach allows for performance stabilization in the short term, ensuring that a team is optimally ready to perform during regular weekly competition but also emphasizes continued long-term player development.

PHYSICAL CONDITIONING WITHIN TACTICAL TRAINING

Although the evidence for TP improving team-sport performance outcomes is anecdotal at present, similar approaches (36,42,43) have been shown to be beneficial. The intermittent, contact nature of rugby union requires players to have well-developed endurance, high-intensity, speed, strength and power capabilities (17). These physical qualities may be best developed through focused, isolated training blocks (22), but in reality competition structures necessitate that these qualities are developed concurrently. In particular, high levels of muscular strength and hypertrophy are essential for elite performance in rugby union (17). S&C coaches will be concerned about whether it is possible to illicit the required physical adaptations for performance by foregoing traditional conditioning methods in favor of a TP approach.

It is clear that the necessary strength and hypertrophy required for elite performance cannot be developed solely through on-field conditioning practices. Resistance training methods are indispensable in rugby union (17), and it follows that training can therefore never be wholly tactical in nature. There is, however, scope within the prescription of resistance training to align training stimulus with on-field activities to improve transfer of physical abilities from the weight room to the field (4). For example, a field session with a focus on acceleration,
deceleration, and collisions could be successfully paired with a gym session incorporating heavy sled towing. Further examples of how resistance training could be used to complement tactical training sessions are provided in Table 2.

In contrast to resistance training, tactical training sessions represent an ideal opportunity to develop game-specific speed, physical endurance, and repeated high-intensity effort abilities in situ. The effectiveness of this approach has been previously demonstrated (16,18,44). For example, maximal velocity is noted as an important physical quality for rugby union performance (14), but maximal velocity is a difficult quality to improve within a team sport environment (3,23). In this context, training dedicated specifically to improving linear maximal velocity for rugby may be taking time away from tactical development activities. Instead “relative” or “game-specific” speed may be a much more important parameter for performance and can be trained within a game context (16). Abilities such as changing direction at high speed to avoid a defender and accelerating through contact or maintaining speed while catching a pass are much more likely to have an effect on match performance. These skills are better trained using skill and game-based approaches rather than linear speed drills (10).

In this light, the transfer of physical abilities to game performance will be better for abilities developed through an integrated model of training. It has already been demonstrated that a conditioning games approach is effective for developing endurance fitness in professional rugby players (18). In addition, recent research has demonstrated that manipulating the constraints in various small-sided games allows coaches to adapt the physiological stresses placed on participants (44). Based on this information, the integrated approach to training advocated by TP may be effective for conditioning rugby union players.

Figure 3. Typical structure of a tactical periodization training plan for soccer for (A) a 6-day turnaround and (B) a 5-day turnaround.
VERTICAL INTEGRATION

A key principle of the TP model is the concept of “horizontal alternation of specificity” (12,41) (direct translation) but is operationally similar to Charlie Francis’ “vertical integration” approach to physical training (15). This describes the manipulation of training activities to emphasize the development of different physical and tactical abilities throughout the training week. Thus, no two days within a given week stress the same physical fitness or tactical component. Training emphasis is switched on a daily basis to ensure balanced physical development and to allow adequate recovery of the physical fitness component stressed during the previous session. TP models for soccer typically aim to include training days that emphasize strength, endurance, speed, and recovery during the training week. The hypothetical structure of typical training weeks under this approach is illustrated in Figure 3.

The differing physical components are emphasized by varying the playing time, playing area, playing numbers, and technical and tactical complexity of training activities throughout the week (Table 1). In accordance with the principle of overload, training should aim to exceed the typical match demands of whichever physical quality is being trained on that day. Examples of integrated TP training sessions for soccer have been provided by Buchheit et al. (4). It is important to note that these terms (i.e., “strength,” “endurance”) in the context of TP literature have different meanings to those traditionally used in the strength and conditioning literature. For example, “strength” training refers to a session where the emphasis is on playing games in small spaces to overload acceleration and deceleration demands. Going forward, in this text, we will attempt to apply some more universally accepted descriptors.

Applying the concept of vertical integration to rugby training requires consideration of a number of rugby-specific factors. Of primary concern is the frequency of physical contact within rugby union. Professional rugby players are involved in multiple contact events during match play (10–25 tackles, 7–74 rucks/mauls) (13), which significantly increases the overall physical exertion experienced by players (24). Contact training needs to be undertaken regularly during rugby training to improve tackle and ruck efficacy (21), but contact skills training comes at a cost of physical trauma and fatigue (40). For this reason, the positioning of contact training sessions within the training week requires special consideration. It takes at least 48 hours to recover from rugby match play (38) and at least 24 hours to recover from contact training sessions (39). Therefore, we suggest that contact skills training is placed in the middle of the training week to allow for

Table 1
Soccer-specific tactical periodization emphasizing different physical stresses in training

<table>
<thead>
<tr>
<th>Training emphasis</th>
<th>Strength session</th>
<th>Endurance session</th>
<th>Speed session</th>
<th>Recovery session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training goal</td>
<td>High density of acceleration/deceleration, change of direction, jumping and shooting activities</td>
<td>Exceed average match demands in total volume and relative distance (m/min)</td>
<td>Very high velocity of movement and an exaggerated speed of decision making</td>
<td>Physical demands that are similar to match play, but for shorter duration with much longer rest periods</td>
</tr>
<tr>
<td>Group size</td>
<td>Medium to small, even numbers of attackers and defenders, e.g., 5 versus 5 or 4 versus 3</td>
<td>Large, e.g., 10 versus 10 or 10 versus 8</td>
<td>Medium, attackers outnumber defenders, e.g., 8 versus 4</td>
<td>Medium to small, attackers outnumber defenders, e.g., 8 versus 2 or 4 versus 2</td>
</tr>
<tr>
<td>Playing area</td>
<td>Small, e.g., 20 × 30 m</td>
<td>Medium to large, e.g., 50 × 60 m or full field</td>
<td>Medium, e.g., 40 × 30 m</td>
<td>Medium to small, e.g., 30 × 30 m or 15 × 20 m</td>
</tr>
<tr>
<td>Interval time</td>
<td>Short with frequent rest periods, 3–5 min</td>
<td>Long intervals, 20–30 min</td>
<td>Very short with frequent rest periods, 1–2 min</td>
<td>10–15 min</td>
</tr>
<tr>
<td>Recovery between intervals</td>
<td>Partial recovery, 3–5 min</td>
<td>Complete recovery, 5–8 min</td>
<td>Partial recovery, 2–4 min</td>
<td>Complete recovery, 5–8 min</td>
</tr>
<tr>
<td>Intervals per set</td>
<td>2–3</td>
<td>1</td>
<td>2–3</td>
<td>1</td>
</tr>
<tr>
<td>No. of sets</td>
<td>4–6</td>
<td>1–3</td>
<td>4–6</td>
<td>3–4</td>
</tr>
</tbody>
</table>
both maximum recovery from the previous match and to allow full recovery before the next match (Figure 4). The placement of the contact training session “anchors” the rest of the training week. Rugby players generally have at least 2 rest days in a 7-day microcycle, meaning that they effectively have 1 less training day per week than soccer players. This is similar to the 6-day microcycle in soccer (Figure 3B). Suggested training parameters for all vertical integration sessions are provided in Table 2, with explanations in the text below.

In the rugby context, it may be favorable to place a non-contact work capacity session on Monday (after a Saturday match) for 2 reasons. First, players do not fully recover during the first 48 hours after match involvement (39) and so should not be exposed to further collisions or high-intensity exertions during this period. Second, the running demands of rugby union match play are relatively low (6), and in the absence of contact these can be achieved and exceeded relatively easily during conditioning games (24). This indicates that the aerobic ability required for performance can be maintained through these non-contact work capacity sessions while simultaneously developing skills and/or tactical awareness. These sessions could be seen as similar to the “endurance” or “recovery” sessions advocated in the TP literature.

In addition to the positioning of contact training during the week, the “dose” of contact players are exposed to in training is an important consideration. Analysis of ball-in-play time in rugby union has shown that, on average, the ball is in play for 26 seconds, with the longest ball in play phase reported as 113 seconds, and the average ball out-of-play time is 59 seconds (34). The mean contact demands of rugby show that players may be exposed to 0.56 contact events per minute (28), but this figure may increase to 0.89 collisions per minute during the longest periods of play (35). Based on this analysis, relative overload can be achieved during conditioning games (24). This indicates that the aerobic ability required for performance can be maintained through these non-contact work capacity sessions while simultaneously developing skills and/or tactical awareness. These sessions could be seen as similar to the “endurance” or “recovery” sessions advocated in the TP literature.

Table 2
Rugby-specific TP model emphasizing horizontal alternation of different physical stresses throughout the training week

<table>
<thead>
<tr>
<th>Training emphasis</th>
<th>Noncontact work capacity session</th>
<th>Contact, acceleration and deceleration sessions</th>
<th>Speed session</th>
<th>Active Recovery session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training goal</td>
<td>Develop endurance capacity; running intensities and volumes greater than match play; no physical contact</td>
<td>High density of contact involvements (tackles and/or rucks), acceleration, deceleration, and changes of direction</td>
<td>Elevated speed of decision making, movement actions, and tactical execution; some contact involvement</td>
<td>Similar to or below match intensity for short periods of play, with long periods of recovery</td>
</tr>
<tr>
<td>Group size</td>
<td>Large, e.g., 10 versus 10 or 10 versus 8</td>
<td>Medium to small, e.g., 5 versus 5</td>
<td>Medium, e.g., 10 versus 7</td>
<td>Large, e.g., 15 versus 8</td>
</tr>
<tr>
<td>Playing area</td>
<td>Medium to large, e.g., 50 × 60 m or full field</td>
<td>Small, e.g., 15 × 20 m</td>
<td>Medium, e.g., 60 × 50 m</td>
<td>Medium to large, e.g., 50 × 60 m or full field</td>
</tr>
<tr>
<td>Interval time</td>
<td>20–30 min</td>
<td>60–120 s</td>
<td>30–60 s</td>
<td>120 s</td>
</tr>
<tr>
<td>Recovery between intervals</td>
<td>Complete, 5–8 min</td>
<td>60 s</td>
<td>60–120 s</td>
<td>60 s</td>
</tr>
<tr>
<td>No. of intervals</td>
<td>1</td>
<td>3–5</td>
<td>6–8</td>
<td>3–4</td>
</tr>
<tr>
<td>No. of sets</td>
<td>1–3</td>
<td>4–6</td>
<td>6–8</td>
<td>3–4</td>
</tr>
<tr>
<td>Complimentary resistance training session</td>
<td>Full body strength: squat, hip hinge, push, pull with unilateral/bilateral options; sets/reps: 3 × 5–8; intensity: 65–85% 1RM</td>
<td>Strength-speed/acceleration: sled push/pull variations, Olympic lift variations; sets/reps: 5 × 1–3; intensity: ≥85% 1RM—acceleration emphasis</td>
<td>Speed-strength/power: Olympic lift variations, plyometrics; sets/reps: 5 × 3–5; intensity: 0–70% 1RM—velocity emphasis</td>
<td>No resistance training</td>
</tr>
</tbody>
</table>

1RM = 1 repetition maximum; TP = tactical periodization.
achieved within a contact skills session by ensuring that work intervals last for 1–2 minutes so that players are involved in approximately 1 collision per minute. Contact training sessions rely largely on players both generating momentum through rapid acceleration and negating other player’s momentum during contact phases. The ability to close space quickly and realign effectively are determinants of success for defenders. As such, acceleration and deceleration abilities are naturally stressed through contact-focused technical/tactical activities, and these can be further emphasized through the use of small playing areas and evenly matched team sizes (44).

Speed emphasis training in rugby union should look to accentuate both speed of decision making and speed of movement. It is during this session that players should accumulate most of their maximum velocity (V_{Max}) running volume for the week. Analysis of the “worst-case” scenario during international match play has shown that the maximum distance covered in a 1-minute interval is 184 ± 28 m (11). This indicates that a mean intensity of 200 m/min during work intervals will satisfy the overload requirement for speed during these sessions. It is important that players achieve both individual V_{Max} and worst-case scenario mean running intensities at times during this session, although these need not be concurrent.

Because these training sessions take place in the presence of a main emphasis on technical/tactical skill development, there will be a great deal of variation between work intervals. Microtechnology is hugely valuable to the S&C coach in assessing whether the session goals have been achieved and in providing feed-forward information to further improve subsequent training sessions (9).

Using a TP structure emphasizes consistency of training prescription across multiple competition weeks. This ensures that players receive adequate (hopefully optimal) stimulation each week for each of the important physiological parameters for performance. In the long-term, this is likely to produce consistency in physical performance, avoiding undesirable peaks and troughs during the season.

SESSION TO SESSION IMPLEMENTATION

The principle of “conditioned practices” can be used for the planning of individual training sessions within the larger training plan (12). Effective conditioned practices rely on the coach shaping training around the targeted principles of play and associated key behaviors. It is suggested that this should be split into 2 dimensions: (a) the tactical/technical dimension (motor behaviors, cognitive functioning) and (b) the physiological dimension (physical load) (12). Appreciating these 2 factors will allow coaches to manipulate the levels of intensity to ensure the tactical “vision” of the principle is met. In Kerr’s (26) study of the “All Blacks” rugby team, for example, coaches and players confessed that tactical elements, such as decision-making, physical intensity, and the number of randomized situations incorporated within training, far exceeded the demands of an elite international rugby match. This highlighted the overall goal of their training: for training to be harder than the game.

The holistic nature of TP means that a number of demands can be increased to affect session demands. Coaches can manipulate the levels of cognitive load, technical skills, tactical understanding, physical stress, anxiety, and complexity of movements depending on the desired goal. Tan et al. (42) theorized 4 pedagogical principles that can allow for learning to occur: (a) tactical complexity, (b) representation, (c) exaggeration, and (d) tactical transfer. Coaches can apply these principles to challenge their players to understand the moment of the game (as informed

![Figure 4. Proposed structure of a tactical periodization training week for rugby.](image)
Table 3
Sample session plan focused on defensive organization, illustrating the incorporation of tactical periodization principles into session planning

<table>
<thead>
<tr>
<th>Date: October 6, 2017</th>
<th>Phase: early in-season</th>
<th>Total time: 1 h</th>
</tr>
</thead>
</table>

Tactical Session aims:

Game moments: defense organization (DO) and transition from defense to attack (TDA)

Tactical scenario: goal line defense (DO)

Sub-principle: high line speed (get away from the line)

Sub-sub-principles: compress/safety in numbers; win the body height battle

Tactical scenario: goal line turnover (TDO)

Sub-principle: identify space and transfer ball there quickly

Sub-sub-principles: eyes up; effective communication

<table>
<thead>
<tr>
<th>Technical: appropriate body position/height for goal line defense</th>
<th>Physical: “strength” emphasis—frequent collisions and accelerations</th>
<th>Mental: siege mentality—hold the line at all costs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Structure</th>
<th>Key coaching points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up/introduction</td>
<td>1 versus 1, both players on knees, 5 × 20-s bouts with 40-s recovery.</td>
<td>Players aim to pin opponents’ shoulders. Relates to body height battle (technical)—can not let opponent get underneath you!</td>
</tr>
<tr>
<td>1) Wrestling (contact readiness)</td>
<td>From standing start, ball carrier aims to carry ball between 2 defenders. Defenders aim to hold player up/drive him back. Five carries per player in a group of 3.</td>
<td>Primary defender target hips/thighs (low). Secondary defender wrap upper body, lend weight (technical).</td>
</tr>
<tr>
<td>2) 2 versus 1 tackling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © National Strength and Conditioning Association. Unauthorized reproduction of this article is prohibited.
<table>
<thead>
<tr>
<th>Game/activity 1: small space goal line defense</th>
<th>5 versus 5 in 15 × 15 m. Multiple grids to ensure all players involved. 6 × 60 s bouts with 60 s rest between each (each team defend 3×). If teams score within 60 s throw in a new ball and continue.</th>
<th>Tactical: 1) Attackers must commit players to keep possession; defenders have numbers advantage if not involved in ruck. Make good decisions regarding when to compete. 2) Attackers can attack either side of ruck, therefore eyes up and match numbers. 3) Relieve pressure through consistent hard line speed. Technical: 1) Maintain body height/tackle technique. Aim for 2 versus 1 tackles. Mental: 1) Additional consequences for conceding. 2) Agitated/angry coaching behaviors to increase pressure. 3) Deliberately unfair refereeing during some bouts to develop resilience.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game/activity 2: increase focus close to goal line</td>
<td>8 versus 8 in 30 × 22 m. Constraint = field width narrows nearer goal line (see figure). 6 × 120-s bouts with 60-s rest between each (each team defend 3×). If teams score within 120 s, restart immediately from top of grid.</td>
<td>Tactical: 1) Further danger related to width (attackers going round you), closer to goal line danger related to attackers going through you. Awareness of need to compress defense and increase line speed closer to line. Technical: 1) Remain connected during when there is greater width. 2) Defend forward, 2 man tackles close to goal line Mental: As above</td>
</tr>
</tbody>
</table>
To give a practical example, consider a team that needs to develop their ability to defend while positioned dangerously close to their try line. Multiple technical, tactical, physical, and mental demands are placed on the players in this situation (e.g., tackle technique, aggression, determination, physical conditioning, repeated high-intensity effort ability, the shape and understanding within the defensive line, and effective communication between players). For a team to achieve its goals of (a) not conceding points and (b) regaining possession, they will need to be effective in all these areas. The principle of “representation” implies that the practice should represent the information-movement coupling of that in a game (41). In this instance, a coach should ensure that the attacking team is simulating a representative tactically informed attack close to the ruck situation and that the defensive response is appropriate. The coach may vary the tactical complexity of practice depending on what needs to be achieved. In this instance, the game could be made simpler with smaller numbers (5 versus 5) and a relatively small pitch (15 × 10 m). To align this session with the vertically integrated physical development plan, this particular session would be placed within the “contact, acceleration, deceleration” emphasis day of the weekly microcycle. Set and rep times would be manipulated to achieve relative physical overload.

Manipulating the physical and tactical constraints in this way requires players to make more tackles in a certain time frame than they would in a competitive match (8,33). Similarly, manipulating the rules and behaviors of the participants will “exaggerate” the importance of certain techniques and actions, once again increasing both the physical load and the cognitive load. In addition, because of the psychological nature of “danger” in almost conceding, coaches can use certain behaviors, such as scolding and hustling, to replicate the psychological context of a game.

Table 3

<table>
<thead>
<tr>
<th>Game/activity 3: overload defense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactical:</td>
</tr>
<tr>
<td>Technical:</td>
</tr>
<tr>
<td>Mental:</td>
</tr>
</tbody>
</table>

Task: 8 versus 6 attack defense game in a large area. 30 × 50 m. Attackers constrained, may not use consecutive pick and go; 6 × 60 s bouts with 60-s rest between each team defend. 6-60-s bouts with 60-s rest between each team defend. 6-60-s bouts with 60-s rest immediately at half-way. |

By principles of play) targeted within that session.

Copyright © National Strength and Conditioning Association. Unauthorized reproduction of this article is prohibited.
Roles of technical/tactical and strength and conditioning coaches in

national strength and conditioning association. Unauthorized reproduction of this article is prohibited.

Focus on long-term team development.

to-match needs while still maintaining enough to respond to arising match-
stant communication will be required both in the long- and short-term. Con-
to be collaborative and transactional between these 2 professionals needs
planning. As such, the relationship and in the areas of responsibility for
overlap both in the skills required and in the areas of responsibility for planning. As such, the relationship between these 2 professionals needs to be collaborative and transactional both in the long- and short-term. Constant communication will be required to allow for the program to be agile enough to respond to arising match-to-match needs while still maintaining focus on long-term team development.

In practical terms, this interaction will necessitate weekly planning meetings between the technical/tactical and S&C coach where the training program for the week will be discussed and described. After analysis of the previous game performance and consideration of the long-term program goals, the technical tactical coach will decide on a number of training outcomes for the week. The S&C coach will provide a broad weekly training template that takes into account the principles of vertical integration for the purposes of maintaining or developing physical qualities over the course of the week’s microcycle. The technical/tactical and S&C coach should then collaborate to decide which activities might best address the goals for the week and where these activities would be best placed in the schedule. During this process, the S&C coach would likely assist the technical tactical coach in manipulating the constraints of activity design (pitch dimensions, numbers of attackers and defenders, work and rest period timings, etc.) to align with the physical training outcomes desired.

After this planning phase, both technical/tactical and S&C coaches must critically assess all activities to determine whether they have achieved the desired outcomes. The technical/tactical coach may assess this based on how training activities can be further manipulated of the “unbreakable entirety” of the game (41). This concept provides pedagogical principles for the creation of activities and situations that anchor coordination of the players or the ability to execute tactical movements under pressure. The S&C coach will use objective (global positioning system, video) or subjective measures (session rating of perceived exertion) to gauge whether the activity achieved the desired levels of physical exertion. Based on these observations, both coaches should reflect and discuss how training activities can be further improved. It is imagined that over time the coaches will develop a library of activities that they trust to develop the holistic training goals described and that manipulations of these activities will form the basis of future training sessions.

Collaboration between technical tactical and S&C Coach

It may be advantageous for rugby union teams to adopt a TP approach to training because of the demonstrable advantages in training specificity. Application of this approach maximizes time spent in game situation activities that will likely have a positive influence on on-field performance. However, consideration needs to be given to the nature of the relationship between technical/tactical and S&C coach (Figure 5). There is significant overlap both in the skills required and in the areas of responsibility for planning. As such, the relationship between these 2 professionals needs to be collaborative and transactional both in the long- and short-term. Constant communication will be required to allow for the program to be agile enough to respond to arising match-to-match needs while still maintaining focus on long-term team development.

In practical terms, this interaction will necessitate weekly planning meetings between the technical/tactical and S&C coach where the training program for the week will be discussed and described. After analysis of the previous game performance and consideration of the long-term program goals, the technical tactical coach will decide on a number of training outcomes for the week. The S&C coach will provide a broad weekly training template that takes into account the principles of vertical integration for the purposes of maintaining or developing physical qualities over the course of the week’s microcycle. The technical/tactical and S&C coach should then collaborate to decide which activities might best address the goals for the week and where these activities would be best placed in the schedule. During this process, the S&C coach would likely assist the technical tactical coach in manipulating the constraints of activity design (pitch dimensions, numbers of attackers and defenders, work and rest period timings, etc.) to align with the physical training outcomes desired.

After this planning phase, both technical/tactical and S&C coaches must critically assess all activities to determine whether they have achieved the desired outcomes. The technical/tactical coach may assess this based on how training activities can be further manipulated of the “unbreakable entirety” of the game (41). This concept provides pedagogical principles for the creation of activities and situations that anchor coordination of the players or the ability to execute tactical movements under pressure. The S&C coach will use objective (global positioning system, video) or subjective measures (session rating of perceived exertion) to gauge whether the activity achieved the desired levels of physical exertion. Based on these observations, both coaches should reflect and discuss how training activities can be further improved. It is imagined that over time the coaches will develop a library of activities that they trust to develop the holistic training goals described and that manipulations of these activities will form the basis of future training sessions.

Collaboration between technical tactical and S&C Coach

It may be advantageous for rugby union teams to adopt a TP approach to training because of the demonstrable advantages in training specificity. Application of this approach maximizes time spent in game situation activities that will likely have a positive influence on on-field performance. However, consideration needs to be given to the nature of the relationship between technical/tactical and S&C coach (Figure 5). There is significant overlap both in the skills required and in the areas of responsibility for planning. As such, the relationship between these 2 professionals needs to be collaborative and transactional both in the long- and short-term. Constant communication will be required to allow for the program to be agile enough to respond to arising match-to-match needs while still maintaining focus on long-term team development.

In practical terms, this interaction will necessitate weekly planning meetings between the technical/tactical and S&C coach where the training program for the week will be discussed and described. After analysis of the previous game performance and consideration of the long-term program goals, the technical tactical coach will decide on a number of training outcomes for the week. The S&C coach will provide a broad weekly training template that takes into account the principles of vertical integration for the purposes of maintaining or developing physical qualities over the course of the week’s microcycle. The technical/tactical and S&C coach should then collaborate to decide which activities might best address the goals for the week and where these activities would be best placed in the schedule. During this process, the S&C coach would likely assist the technical tactical coach in manipulating the constraints of activity design (pitch dimensions, numbers of attackers and defenders, work and rest period timings, etc.) to align with the physical training outcomes desired.

After this planning phase, both technical/tactical and S&C coaches must critically assess all activities to determine whether they have achieved the desired outcomes. The technical/tactical coach may assess this based on how training activities can be further manipulated of the “unbreakable entirety” of the game (41). This concept provides pedagogical principles for the creation of activities and situations that anchor coordination of the players or the ability to execute tactical movements under pressure. The S&C coach will use objective (global positioning system, video) or subjective measures (session rating of perceived exertion) to gauge whether the activity achieved the desired levels of physical exertion. Based on these observations, both coaches should reflect and discuss how training activities can be further improved. It is imagined that over time the coaches will develop a library of activities that they trust to develop the holistic training goals described and that manipulations of these activities will form the basis of future training sessions.

Conclusion

The idea of TP has been made popular recently by a number of high-profile soccer coaches and, with Jones’ recent work, seems to be making its way into rugby union. However, very few reports of TP currently exist, and only scant material is available for coaches interested in application. In this article, we have therefore tried to show how TP can be applied in rugby union to help coordinate long-term planning, improve the relevance and efficiency (specificity) of training, and prepare players more effectively for competition.

Coaches should create their own game model, simplifying the complexity of the game, and specifying the key moments and main tactical principles and sub-principles by which they want their team to play. Nested plans can be organized around these principles with the tactical demands driving the inclusion of relevant and complementary technical, physical, and psychological skills. When coaches have a clear vision for how they want their team to play, designing weekly and monthly plans that are balanced according to the demands of their vision becomes relatively simple. At the level of a session, TP reminds us of the sanctity of the “unbreakable entirety” of the game (41). This concept provides pedagogical principles for the creation of activities and situations that anchor coordination of the players or the ability to execute tactical movements under pressure. The S&C coach will use objective (global positioning system, video) or subjective measures (session rating of perceived exertion) to gauge whether the activity achieved the desired levels of physical exertion. Based on these observations, both coaches should reflect and discuss how training activities can be further improved. It is imagined that over time the coaches will develop a library of activities that they trust to develop the holistic training goals described and that manipulations of these activities will form the basis of future training sessions.

CONCLUSION

The idea of TP has been made popular recently by a number of high-profile soccer coaches and, with Jones’ recent work, seems to be making its way into rugby union. However, very few reports of TP currently exist, and only scant material is available for coaches interested in application. In this article, we have therefore tried to show how TP can be applied in rugby union to help coordinate long-term planning, improve the relevance and efficiency (specificity) of training, and prepare players more effectively for competition.

Coaches should create their own game model, simplifying the complexity of the game, and specifying the key moments and main tactical principles and sub-principles by which they want their team to play. Nested plans can be organized around these principles with the tactical demands driving the inclusion of relevant and complementary technical, physical, and psychological skills. When coaches have a clear vision for how they want their team to play, designing weekly and monthly plans that are balanced according to the demands of their vision becomes relatively simple. At the level of a session, TP reminds us of the sanctity of the “unbreakable entirety” of the game (41). This concept provides pedagogical principles for the creation of activities and situations that anchor

Figure 5. Roles of technical/tactical and strength and conditioning coaches in collaborative planning for tactical periodization.
Tactical Periodization for Rugby Union

Michael Ashford is a PhD student in Sports Coaching at Leeds Beckett University, and the attack coach of Harrogate Rugby Football Club.

David Piggott is a senior lecturer in Sports Coaching at Leeds Beckett University.

REFERENCES

Despite the potential value we have attempted to illustrate in this article, the efficacy of TP as a coaching methodology is no better than anecdotal at present. It remains unclear how TP may best be applied in rugby union and to what extent it might lead to playing success. Indeed, a number of basic questions await empirical scrutiny: Does TP lead to improved team decision-making? Is physical training more effective when integrated with tactical training in a TP approach, and how is this best achieved? How long does it take to embed a TP approach with a squad? How far can a TP approach be adopted with junior players or with limited resources?

Similar methodologies, such as those developed by Richards et al. (36), have demonstrated some initial empirical success in team sports (soccer, hockey, and netball). In addition, many of the pedagogical principles informing TP are derived from better tested theories, such as Teaching Games for Understanding (41) and constraints and nonlinear pedagogy (43). So, although there are some indications that TP may be a fruitful approach, some pathbreaking coaches will need to take a risk, apply the ideas outlined here, and generate and share some evidence before we truly know the value of TP to rugby union coaches.

Conflicts of Interest and Source of Funding: The authors report no conflicts of interest and no source of funding.

Jason C. Tee is a senior lecturer in Sports Coaching at Leeds Beckett University, and the lead Strength and Conditioning Coach for Leeds Rhinos Women’s team.

