TSAC CONFERENCE
TACTICAL STRENGTH AND CONDITIONING
April 16 – 18, 2013 | Norfolk, VA | NSCA.com/TSAC2013
Individualising conditioning programs for large tactical groups

Mick Stierli BPhysEd, MExSc, CSCS
Goals of this presentation

• Understand the importance of prescribing individual training intensity during conditioning sessions.
• Be able to prescribe individual training programs for tactical athletes.
• Individualise a group training session to ensure all tactical athletes are training at the same intensity.
Why is this important?

• In large groups especially in Law enforcement, Military, Fire and Rescue there will generally be large differences in fitness levels.
What’s the difference?

Professional sport

Law enforcement
Differences

Professional sport
• Monitoring Programs
• Well being reviews
• GPS
• Heart rate monitoring
• RPE

Law enforcement
• How long is a piece of string?
• Funding
• Every one is different
• Numbers
Differences

Professional sport

Law enforcement
How can we as coaches cater for everyone?

- Age
- Sex
- Different fitness levels
- Yet still ensure that all individuals get the training that they need.
Non individualised programs
Ways to determine your maximal aerobic speed (MAS)

• Distance / Time = MAS in metres a second
• For example, if your running time trial for 2km was 10 minutes, then your MAS = 3.33m/s (2000 m/600 s).
• If your 5 min max rowing time trial was 1500m, then MAS = 5m/s (1500 m/300 s).
• If your 10 min cycling time trial was 6000m, then MAS = 10 m/s (6000 m/ 600 s)
Different MAS speeds for different intervals

• Using our running example test example (3.33 m/s) running intervals at 100, 110, 120 or 130 % MAS would mean the following distances in the specified times.

• Important point MAS above 100% can only be maintained for shorter intervals, but can be repeated a number of times.
MAS speed for different intervals

<table>
<thead>
<tr>
<th>Speed (%)</th>
<th>10 secs</th>
<th>15 secs</th>
<th>20 secs</th>
<th>30 secs</th>
<th>60 secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>23 m</td>
<td>34 m</td>
<td>47 m</td>
<td>70 m</td>
<td>140 m</td>
</tr>
<tr>
<td>80%</td>
<td>27 m</td>
<td>40 m</td>
<td>53 m</td>
<td>80 m</td>
<td>160 m</td>
</tr>
<tr>
<td>90%</td>
<td>30 m</td>
<td>45 m</td>
<td>60 m</td>
<td>90 m</td>
<td>180 m</td>
</tr>
<tr>
<td>100%</td>
<td>33 m</td>
<td>50 m</td>
<td>66 m</td>
<td>99 m</td>
<td>198 m</td>
</tr>
<tr>
<td>110%</td>
<td>37 m</td>
<td>55 m</td>
<td>74 m</td>
<td>110 m</td>
<td></td>
</tr>
<tr>
<td>120%</td>
<td>39 m</td>
<td>59 m</td>
<td>78 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130%</td>
<td>43 m</td>
<td>64 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic mathematics

• Just to make sure that you understand how we have calculated the distances.
• Speed = Distance/time
• Distance = Speed x Intensity x time
• 59.94m = 3.33 m/s x 1.2 (120%) x 15 sec
Prescription tests

• Tests that produce a termination velocity at or very close to VO$_2$ max are useful when the goal is to design high intensity aerobic training programs for large tactical groups.
What are some of the tests that we can use?

- Beep test (multi stage shuttle run)
- University of Montreal Track Test (MAS)
- 30:15 Intermittent Fitness Test (Buchheit)
Beep Test (multi stage shuttle)

<table>
<thead>
<tr>
<th>Beep Shuttle Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>3.8</td>
</tr>
</tbody>
</table>

Bishop, Sports Coach
Beep test (multi stage shuttle)

- MAS = 2.4 x max shuttle speed – 14.7
- Multi stage shuttle (beep test) results over 10 km.h\(^{-1}\) underestimate MAS and should be adjusted using the formula above.
Maximal Aerobic Speed (MAS) Test

200 metre oval

25 metres

2 metres
Maximal Aerobic Speed (MAS) Test

- Set up a course over 200 or 400 metres
- Place in colour cone (red) 25 metres apart around circumference of marked track
- Place second colour (yellow) 2 metres behind each of the red cones (safety zone)
- Athletes start on red cone
Maximal Aerobic Speed (MAS) Test

- Athletes commence running at 10 km/hr for two minutes
- Must be within coloured cones at audible CD beep
- Test is continuous in nature
- Velocity increases by 1 km/hr every 2 mins
- Test termination – miss cones on 3 consecutive occasions or voluntary exhaustion
MAS can be used to predict VO₂ max

- The following formulae can be used to predict VO₂ max from MAS results:
- \(VO₂ \text{ max (ml.kg}^{-1}. \text{min}^{-1}) = 3.5 \times \text{MAS (in km.h}^{-1}) \)
- Or \(0.0324 \times (\text{MAS})^2 + 2.143 \times \text{MAS} + 14.49 \)
30:15 Intermittent Fitness Test (IFT)

- Martin Buchheit

http://www.martin-buchheit.net
30:15 Intermittent Fitness Test (IFT)

A

3m safe zone

20 Metres

B

3m safe zone

20 Metres

C

3m safe zone
30 – 15 Intermittent Fitness Test (IFT)

- An intermittent shuttle run beep test conducted over a 40 metre course
- 30 seconds running – 15 seconds passive recovery (walking to next starting position)
- Velocity progressively increases with each stage
- Starts at 8 km/hr and increases at 0.5 km/hr per stage
30 – 15 Intermittent Fitness Test (IFT)

- Termination criteria – Fail to reach within 3 metre safe zones at time of audio beep on 3 consecutive occasions
- Excellent choice for any intermittent based sports
- Gold standard for tactical athletes (I believe)
- Final velocity (VIFT) can be used to set interval training intensity
30 – 15 Intermittent Fitness Test (IFT)

- The following formulae can be used to predict VO₂ max from IFT results:
 \[VO₂ \text{ max} (\text{ml.kg}^{-1}. \text{min}^{-1}) = 28.3 - 2.15 G - 0.741 A - 0.0357 W + 0.0586 A \times V_{IFT} + 1.03 V_{IFT} \]
- Where G stands for gender (female = 2, male = 1)
- A stands for Age, and W stands for weight
30 – 15 Intermittent Fitness Test (IFT)

• Why do I prefer this test?

1. Can determine a similar training load for tactical athletes.
2. Levels the field between endurance athletes and anaerobic athletes.
3. More specific to the tactical athlete.
4. Takes into account acceleration/deceleration and change
5. Room needed to conduct the test.
Compare the UMTT and 30:15 IFT

UMTT

30 : 15 IFT

Buchheit M, JSCR 2008
Valid and reliable

Buchheit M, JSCR 2010
Important to note

• That the V_{IFT} is much faster than the vVO_2max and the anaerobic contribution is much higher during the 30-15 IFT than during a continuous straight line running test.

• Generally 2 – 5 km/hr faster.
Training intensities

UMTT

15-15 at 110% V_{LB}

30 – 15 IFT

15-15 at 95% V_{IFT}

Buchheit M, JSCR 2008
UMTT (MAS)

Dupont et al, EJAP 2003
Distance is important

Dupont et al 2003
30 – 15 IFT

• While high intensity intermittent shuttle runs are generally performed above vVO_2max.
• V_{IFT} constitute the upper limit for these exercises (with the exception of all out repeated sprints sequences)
Changes in elite professional athletes

- Prep Phase
- Comp Phase
- End of Comp Phase

Bar chart showing changes in $V_{IFT} (km.h^{-1})$ across different phases.
Designing the training program
Rest v active recovery?
VIFT Spreadsheet

| Name | Age | Gender | Bodyweight (kg) | VIFT (m/s) | VO2 Max (ml/kg.min) | VIFT 50% 10s | VIFT 60% 15s | VIFT 70% 15s | VIFT 80% 15s | VIFT 90% 15s | VIFT 95% 15s | VIFT 100% 15s | VIFT 105% 15s | VIFT 110% 15s | VIFT 115% 15s | VIFT 120% 15s |
|------|-----|--------|----------------|------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| M | 20 | 90 | 20.5 | 5.69 | 56.9 | 28 | 48 | 34 | 51 | 40 | 60 | 46 | 68 | 51 | 77 |
| F | 30 | 90 | 19.5 | 5.42 | 52.4 | 27 | 41 | 33 | 49 | 38 | 57 | 43 | 65 | 49 | 73 |
| M | 25 | 85 | 19.5 | 5.42 | 62.6 | 27 | 41 | 33 | 49 | 38 | 57 | 43 | 65 | 49 | 73 |
| M | 25 | 85 | 19.5 | 5.28 | 61.1 | 26 | 40 | 32 | 48 | 37 | 55 | 42 | 63 | 40 | 71 |
| M | 25 | 85 | 19.5 | 5.28 | 61.1 | 26 | 40 | 32 | 48 | 37 | 55 | 42 | 63 | 40 | 71 |
| M | 25 | 85 | 19.5 | 5.14 | 59.6 | 26 | 39 | 31 | 46 | 36 | 54 | 41 | 62 | 46 | 69 |
| F | 30 | 90 | 18.5 | 5.14 | 65.4 | 26 | 39 | 31 | 46 | 36 | 54 | 41 | 62 | 46 | 69 |
| M | 34 | 90 | 18.5 | 5.14 | 72.4 | 26 | 39 | 31 | 46 | 36 | 54 | 41 | 62 | 46 | 69 |
| M | 27 | 90 | 18.0 | 5.00 | 60.7 | 25 | 38 | 30 | 45 | 35 | 53 | 40 | 60 | 45 | 68 |
| M | 34 | 90 | 18.0 | 5.00 | 70.8 | 25 | 38 | 30 | 45 | 35 | 53 | 40 | 60 | 45 | 68 |
| M | 25 | 90 | 17.5 | 4.86 | 56.5 | 24 | 36 | 29 | 44 | 34 | 51 | 39 | 58 | 44 | 66 |
| F | 35 | 90 | 17.5 | 4.86 | 68.1 | 24 | 36 | 29 | 44 | 34 | 51 | 39 | 58 | 44 | 66 |
MAS Spreadsheet

<table>
<thead>
<tr>
<th>Name</th>
<th>MAS RESULTS</th>
<th>VO2 Max (\text{ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1})</th>
<th>Cone Color</th>
<th>Active Recovery</th>
<th>Work</th>
<th>Passive Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km/h (\text{m/s})</td>
<td>10 s</td>
<td>15 s</td>
<td>10 s</td>
<td>15 s</td>
<td>10 s</td>
</tr>
<tr>
<td>18</td>
<td>5.00</td>
<td>63.6</td>
<td>25</td>
<td>38</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>5.00</td>
<td>63.6</td>
<td>25</td>
<td>38</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>17.5</td>
<td>4.86</td>
<td>61.9</td>
<td>24</td>
<td>36</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>17.5</td>
<td>4.86</td>
<td>61.9</td>
<td>24</td>
<td>36</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>4.72</td>
<td>60.3</td>
<td>24</td>
<td>35</td>
<td>28</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>4.72</td>
<td>60.3</td>
<td>24</td>
<td>35</td>
<td>28</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>4.44</td>
<td>57.1</td>
<td>22</td>
<td>33</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>4.44</td>
<td>57.1</td>
<td>22</td>
<td>33</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>4.44</td>
<td>57.1</td>
<td>22</td>
<td>33</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>4.17</td>
<td>53.9</td>
<td>21</td>
<td>31</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>4.17</td>
<td>53.9</td>
<td>21</td>
<td>31</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>14.5</td>
<td>4.03</td>
<td>52.4</td>
<td>20</td>
<td>30</td>
<td>24</td>
<td>36</td>
</tr>
</tbody>
</table>
30-15 VIFT Training Session

20 km/h at 100% for 15secs = 83m
19 km/h at 100% for 15secs = 79m
18 km/h at 100% for 15secs = 75m
17 km/h at 100% for 15secs = 77m
16 km/h at 100% for 15secs = 67m
15 km/h at 100% for 15secs = 62m
14 km/h at 100% for 15secs = 58m

Work 15 secs : Passive rest 15 secs
MAS – MRS Grids
Long side = 100 %
Short side = 70 %

MAS (VO₂) Grids

Work 15 secs : Active Recovery 15 secs
Sample V_{IFT} traditional periodised running program

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>30:15 IFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td>90%</td>
<td>92.5%</td>
<td>95%</td>
<td>97.5%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Work:Rest</td>
<td>10:10</td>
<td>10:10</td>
<td>10:10</td>
<td>10:10</td>
<td>10:10</td>
<td>10:10</td>
</tr>
<tr>
<td>Duration</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
</tr>
<tr>
<td>Rest</td>
<td>3 mins</td>
<td>3 mins</td>
<td>3 mins</td>
<td>3 mins</td>
<td>3 mins</td>
<td>3 min</td>
</tr>
<tr>
<td>Sets</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total time</td>
<td>15 mins</td>
<td>15 mins</td>
<td>15 mins</td>
<td>15 mins</td>
<td>15 mins</td>
<td>15 mins</td>
</tr>
</tbody>
</table>
Sample V_{IFT} undulating periodised running program

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFT</td>
<td>30:15</td>
<td>Basic</td>
<td>Shock</td>
<td>Shock</td>
<td>Unload</td>
<td>Basic</td>
</tr>
<tr>
<td>Intensity</td>
<td>92.5%</td>
<td>100%</td>
<td>102.5%</td>
<td>90%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Work:Rest</td>
<td>15:15</td>
<td>15:15</td>
<td>15:15</td>
<td>15:15</td>
<td>15:15</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
<td>6 mins</td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>2 mins</td>
<td>2 mins</td>
<td>2 mins</td>
<td>2 mins</td>
<td>2 min</td>
<td></td>
</tr>
<tr>
<td>Sets</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total time</td>
<td>24 mins</td>
<td>24 mins</td>
<td>24 mins</td>
<td>24 mins</td>
<td>24 mins</td>
<td></td>
</tr>
</tbody>
</table>
Undulating weekly schedule

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Basic</td>
<td>Shock</td>
<td></td>
<td>Unload</td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td>95%</td>
<td>100%</td>
<td></td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Work:Rest</td>
<td>15:15</td>
<td>15:15</td>
<td></td>
<td>15:15</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>6 mins</td>
<td>6 mins</td>
<td></td>
<td>6 mins</td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>2 mins</td>
<td>2 mins</td>
<td></td>
<td>2 mins</td>
<td></td>
</tr>
<tr>
<td>Sets</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total time</td>
<td>24 mins</td>
<td>24 mins</td>
<td></td>
<td>24 mins</td>
<td></td>
</tr>
</tbody>
</table>
Aerobic power and capacity

<table>
<thead>
<tr>
<th></th>
<th>POWER</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>120%</td>
<td>100%:70%</td>
</tr>
<tr>
<td>Work:Rest</td>
<td>15:15</td>
<td>15:15</td>
</tr>
<tr>
<td>Duration</td>
<td>6 mins</td>
<td>10 mins</td>
</tr>
<tr>
<td>Rest</td>
<td>2 mins</td>
<td>2 mins</td>
</tr>
<tr>
<td>Sets</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total time</td>
<td>24 mins</td>
<td>24 mins</td>
</tr>
</tbody>
</table>
Aerobic power and capacity

- **POWER**: The absolute power of performance measure for that energy system in a one of maximal effort.
- **CAPACITY**: The ability to repeat or sustain high power levels during the use of that energy system.
30-15 as a predictor of injury

Orr, R., Stierli, M. & Hinton, B.
30-15 and the 20m PSRT

Almost Perfect Linear Correlation

Orr, R., Stierli, M. & Hinton, B.
30-15 Training - ABT

• No Difference between 30-15 training program and traditional recruit training program with regards to performance.
• 30-15 training program had less volume and training time then traditional recruit training.

Orr, R., Stierli, M. & Hinton, B.
Things to consider

- Shift rotations
 - When last on shift?
 - When next on shift?
 - Recovery
Appreciation

• National Strength and Conditioning Association (TSAC)
• Dr Mike Newton, Edith Cowan University
• Martin Buchheit
Contact Details

- Mick Stierli
- +61 414 647 645
- katalystperformance@gmail.com

MickStierli
References

References