Anthropometrics and Maximal Physiological Responses of Male Olympic Rowers: 1964 - 2012

Frederick Hagerman PhD
Professor Emeritus of Physiology

&

Jason White PhD
Assistant Professor of Exercise Physiology
Ohio University

Overview

• Testing concepts and monitoring of Olympic rowers from 1964 - 2012
 ▪ How and why we test, and testing and training equipment changes throughout the years
• Data collection and analysis
 ▪ Anthropometrics
 ▪ Physiological data
 ▪ Trends and predictors of performance
• Training, nutrition, and future directions
Introduction to Rowing

- One of the most physically intensive competitive sports
 - Some of the best athletes in the world
- Very high aerobic power
 - Cross country skiing
- The crew is only as strong as it’s weakest link
 - All must row well, in sync in order to be successful

Introduction to Rowing

- Maximal intensity racing over 2,000 meters – 2k
 - Time to completion depends on:
 - Category of boat – heavyweight or lightweight
 - Scull or sweep
 - Boat size – 1, 2, 4, or 8 (coxswain in some)
 - Environmental conditions
 - Water conditions

Olympic events

- Coxless Pair boat
 - London 2012 time - 6:53.30
- Coxless 4 man boat
 - London 2012 time - 6:07.20
 - Bronze medal
- Coxed 8 man boat
 - London 2012 time - 5:51.48
 - Missed medal by 0.3s
Energy Requirements

- Rowing 2,000 meters is 75-80% aerobic and 20-25% anaerobic
 - Mixture of aerobic vs. anaerobic depends on time to completion
 - Aerobic work measured by O₂ Consumption (VO₂)
 - During “erg” test
 - Want to rely on aerobic energy as much as possible
 - More efficient
 - More energy produced
 - Less painful

- Anaerobic work estimated by blood lactate, RER, and O₂ deficit
 - Anaerobic energy provides high amount of energy for a small amount of time
 - Anaerobic emphasis at the start and finish of 2,000 meters
 - Requires the athlete to “tolerate” high amounts of lactic acid and metabolism byproducts
 - Strategic moves during race
 - Ratio of anaerobic to aerobic influences training

How We Tested: Then and Now

- Olympic games 1964-2012
 - 13 Olympic games, including 1980 team that was forced to boycott
- Anthropometrics
 - Always measured height, weight, and % body fat
 - 6 site for rowers estimation of body fat
 - Subscapular
 - Triceps
 - Midbicep
 - Umbilicus
 - Suprailiac
 - Anterior Thigh
Differences in Anthropometrics

- 1988 Olympic 8 selection camp averages (bronze medal)
 - Age – 21
 - Weight – 191.2 lbs.
 - BMI – 23.5
 - 10.02 percent fat

- 2008 Olympic 8 selection camp averages (bronze medal)
 - Age – 27
 - Weight – 210.2 lbs.
 - BMI – 25.2
 - 8.83 percent fat

How We Tested: Then and Now

- Physiological Testing
 - Always measure peak VO2 during 2k and submaximal bouts, lactate response, wattage, and heart rate
 - Equipment used
 - Equipment has become more advanced
 - Biotelemetry in 1972
 - Lactates in 1972
 - Rowing ergometers
 - Gas exchange analyzers
 - Allow immediate analysis of RER, ventilation, peak VCO2, expired oxygen
 - Lactate analyzers
 - Provides accurate lactate measurements in less than 15 seconds

What Does it All Mean??

- VO₂ - Aerobic energy contribution
 - Higher VO₂ and low lactate indicative of very good at using aerobic energy metabolism
 - O₂ uptake, delivery, extraction, and usage

- 1984 invitees average VO₂ during VO₂ max test: 69.8

- 2004 invitees average VO₂ during 2k erg test: 68.2
What Does it All Mean??

• Blood Lactate – estimates anaerobic energy contribution and lactate tolerance
 • High lactate and lower VO2 indicative of inability to handle the workload
 • After training, will see increased VO2 and decreased post-exercise lactate during 2k erg test

• 1988 invitees average post-exercise lactate after 2k erg test: 12.4

• 2008 invitees average post-exercise lactate after 2k erg test: 17.0

What Does it All Mean??

• Use data to rank rowers for coaches
 – Also use anaerobic threshold from gas exchange
 – Ergometer times/wattages = erg scores
 – Racing ergometer can provide wattage and time
 • Want to see aerobic athletes that tolerate lactate well, generate high power, and are lighter in weight

Anthropometric Data

• Anthropometric trends 1964 – 2012
 • Athletes weigh more currently
 – ’60s-’80s average weight around 188 – 198
 – ’90s-2012 average weight around 198 – 212
 • Athletes are slightly taller
 – ’60s-’80s average height around 72” – 76”
 – ’90s-2012 average height around 75” – 77”
 • The recent athletes tend to weigh more but have similar body fat percentages
Muscle Biopsy

- Muscle Biopsies taken in the 80's

Nature and Nurture

- Parents and Sons
 - Miller’s
- Twins
 - Winkelvoss brothers
 - James brothers
- Complete opposite’s
 - Coffey & Staines

Physiological Data

- Physiological trends 1964 – 2012
 - Peak VO2 attained during 2k erg tests have improved
 - So has the technology
 - Average 2k erg test wattage and times have improved
 - Rowing ergs have been used for over 30 years
 - Rowing ergs continue to be developed to simulate on water rowing experience
 - Post-exercise lactates continue to rise with recent athletes
Training

• Aerobic and anaerobic training
 — Use testing to improve whichever area the athlete is deficient in
 • Critical power testing or gas exchange with post-exercise lactate
• Ergometer training
 — Allows accurate prescription and monitoring of training intensity
 — Concept 2
 • Models A – E
 • Dynamic
 • “The tank”
• On the water training
 — Skill, teamwork, and situational

Training Suggestions

• Establish current anthropometric and fitness status of athlete/s first
 — Keep athletes aware of current standards
• Continuously monitor variables to assess training effectiveness
 — VO2, LA, watts/kg, 2k times
• Prescribe intensity using power output/pace
• Utilize submaximal testing
 — Simple method to track changes in rowing and training efficiency
 — Not motivation dependent
 — See impact of buffering agents

Training Suggestions

• Must practice and simulate race starts and finishes
• DO NOT TRAIN ON THE DAY PRECEDING TESTING
 — Must know how to design appropriate test order
 — Need reliable results or entire program thrown off
 — 12-24hrs of no activity prior to testing
 — Hydration and appropriate nutritional intake, no ergogenic aids
• May be better of using a dynamic ergometer
 — Stroke rating closer to on water rowing
Training and Nutrition

- Weight training has made major contributions to the sport
 - Recent athletes weigh more, with similar body compositions to older athletes, and with better 2k erg times
 - Best athletes generate higher wattage/kg body weight over 2,000 meters
 - Can monitor watts/kg pre, during, & post-training
- Train for the specific components of the rowing stroke during weight training
 - Movement specific exercises
- Nutrition requirements, REST and RECOVERY

Future Considerations

- Improving and developing new weight training programs and techniques for rowers
 - Maximize watts/kg over 2,000 meters
 - Sport specific and focused on power generation
 - Upper body pull and lower body push workouts
 - Workouts designed to improve lactate tolerance
- More on water gas exchange telemetry
- Buffering agents???
 - Ethical and doping considerations
- Enticing basketball players to become rowers
 - Elite rowers usually are tall and have long limbs

Conclusion

- Balance and synchronization are just as important as physiological data in winning boats
 - Need good coaches
 - Only as strong as your weakest link
- Most data points have changed from 1964
 - Have become bigger, faster and stronger with better training and nutrition
 - Concept 2 rowing ergometers
 - Better coaches
 - Better boats and oars
 - A boat full of the best athletes, not just one or two great athletes
Questions