NSCA 36th Annual National Conference
July 10 – 13, 2013 | Las Vegas, NV

STRENGTH TO PERFORM. CONDITIONED TO WIN.

NSCA NATIONAL STRENGTH AND CONDITIONING ASSOCIATION

everyonestronger
NSCA.com
Resistance Training for Endurance Athletes: Research and Practical Application

Will Peveler Ph.D.
Question

• Is resistance training beneficial for endurance athletes?
Before 12 weeks of resistance training
After 12 weeks of resistance training
Yes!

- Resistance training in the off-season will lead to increased performance
- Of the 19 studies reviewed, 16 support increased performance
- The other three show no significant differences
Off-Season

• There is no “off” in off-season
 – Last about 3-5 months
 – Decrease volume and intensity
 – Recover physically and mentally
 – Work on power for next season
 – Maintain necessary endurance base
• Resistance training for endurance athletes is not a “strength” training program
• You can not adapt a body building or strength program
• Too high volume
• Common mistake made by lay population
Effects of Resistance Training on Endurance Performance

• Concurrent training interferes with optimal strength gains (Hickson 1980)
• Not a concern for endurance athletes
• Research has demonstrated that concurrent training does not negatively impact endurance performance
• No alteration in VO2max
• No decrease in endurance performance measures
• Resistance training does not increase aerobic capacity
 – VO2max Measures remain unaltered due to resistance training
 • Even when increases in performance are evident
Improved Performance

• Increase in Time to exhaustion
 – Hickson et al. (1988)
 • Short-term endurance (5-8 min) increased by 11% (cycling) and 13% (Running)
 • Long-term (69-85 min) increased by 20% (cycling)
 – Running not measured in long-term (injury)
 – Storen et al. (2008)
 • Increased time to exhaustion by 20.3%, while running at maximal aerobic speed
– Marcinik et al. (1991)
 • Cycling time at 75% of VO$_{2\text{max}}$ increased by 33%
• Increases in performance over a fixed distance or time
 – Aagaard et al. (2007)
 • Short-term endurance (distance traveled in 5 min) increased by 3-4%
 • Long-term endurance (distance traveled in 45 min) increased by 8%
 – Paavolainen et al. (1999)
 • 5 km running time improved by 3.1%
• Spurrs, Murphy, & Watsford (2003)
 – 3 km run time improved by 2.7%
• Improvement in economy
 – Johnsten et al. (1997)
 • Improvement in economy running at 214 and 230
 m·min⁻¹ (8 & 8.5 mph)
 – Millet et al. (2002)
 • Improvement in economy (3km run at a fixed
 resistance)
 – Spurrs, Murphy, & Watsford (2003)
 • Improved running economy (VO₂ measures at 12, 14, &
 16 km h⁻¹)
– Storen et al. (2008)
 • 5% improvement in running economy at 70% of VO$_{2\text{max}}$

 • Running economy improved at three different submaximal intensities by 6-10%
• Improvements in time to exhaustion and increases in performance can be attributed to improvement in economy
 – Due to no increase in VO$_{2\text{max}}$
 – However, some studies did report an increase in lactate threshold
– Increased performance due to neuromuscular adaptations
 • Increased type I muscle fiber recruitment, which delays type II muscle fiber recruitment
 – Reducing peak tension at submaximal levels
 • Improved motor unit recruitment patterns and synchronization
 • Improved stretch-shortening cycle during running
 – Increased elastic energy from eccentric contraction
 – Reduce contact with ground
• Increased lactate threshold
 – Current research has produced mixed results
 – Increased LT would lead to increased performance
• Body composition
 – Most research does not support significant changes in body composition in endurance athletes
 – Hickson et al. (1988)
 • Muscle biopsy- fiber diameter unchanged after training
• Increased power production
 – Noakes (1988), Nummela et al. (2006), and Paavolainen et al. (1999) suggest that muscle power affects economy.
 – For sprints and climbing
• Decrease the risk of overuse injuries
 – Decrease muscle imbalance
 – Increased joint stability
 – Improved biomechanics
• Increased bone density
 – Important for cyclists and swimmers
 – Site specific
• Most swimming studies concentrate on 50-200 meters
 – Trappe and Pearson (1994)
 • Compared pull-ups and dips with traditional weight training
 • 365.8 meter time trial increased in both groups
Sprint swimming research has demonstrated that resistance training improves:

• Stroke rate
• Distance traveled per stroke
• Both would lead to increased performance in distance swimming as well.
Practical Application

• The average off season is about 12 weeks long.
 – When examining the training length of 13 studies:
 • Mean of 9.31 ± 3.28 weeks
 • Range = 5-16 weeks
 • Improvement was evident even in 5 and 6 week programs
Specificity

• Exercises should be sport specific
 – Look at angle and speed of action
 – Cycling:
 • Soleus
 – Swimming:
 • Rotator cuff muscles
 – Working core important for all
Types of Resistance Training

• Weight Training
• Plyometrics
• Body management
– Sport specific resistance

• Cycling:
 – Tension intervals
 – Hill repeats

• Running:
 – Hill repeats
 – Stadium workouts

• Swimming:
 – Tethered swimming
 – Paddles
 – Dry-land
• Sudden increases in sport specific resistance training can lead to injury
• Research shows improvement with all types of resistance training
 – Plyometrics
 – Weight Training
 • High reps/low weight
 • High reps high speed
 • Low reps/high weight
• To date, one has not been shown to be more effective than another
Sedano et al.

- differences between strength training (3 sets, 7 reps) and plyometrics, muscular endurance (3 sets, 20 reps), and a control group (band).
- Both resistance groups improved significantly in strength, running economy, and peak velocity.
- Only the strength and plyo group increased 3km run time.
Repetition and Sets

• There is not a consensus on the correct amount of reps
 – Low reps (4-6), mid reps (8-12), and high reps (up to 30) appear to work.

• Sets 1-3
• Number of exercises
 – Keep program low volume
 – One large movement/muscle group
 – One small movement/muscle
Developing a program

• Start slowly
 – DOMS
 • Cycling: no eccentric motion
 – Injury

• Technique
 – Endurance athletes may not be familiar with proper technique
• Days per week
 – One to three
 – Start with two days in the weight room and one sport specific resistance
 – When you move from off-season to preparation phase drop to one day/week.
 – Stop resistance training during competition phase
 • Can keep one day/week sport specific resistance
• Volume
 – Do not add weight training on top of normal off-season volume
 – Jackson, Hickey, & Reiser (2007)
 • Three groups:
 – Cycling only
 – High resistance (4 reps)
 – High repetition (20 reps)
 • No differences in performance between any group
• Both resistance protocols were added on top of cycling
• Subjects were also conducting hill repeats and intervals
• Too high volume
• Subjects stated that they would not be able to keep up the volume of training
• Must keep an aerobic base
Contact Information

• Will Peveler Ph.D.
• Email: pevelerw1@nku.edu
• Office: (859) 572-5960

