Training for High-Performance Collegiate Ice Hockey

Allen Hedrick, MA, CSCS, *D
Head Strength and Conditioning Coach
U.S. Air Force Academy

Keywords: strength, power, endurance, periodization

Ice Hockey Is a High-Speed Physical Game. Those characteristics are strictly emphasized in the hockey program at the U.S. Air Force Academy. For our athletes, hard work starts in the weight room with their strength and conditioning program. To match the demands of the sport, emphasis is placed on developing a combination of power and endurance, so that the athletes can play a high-speed physical style of hockey over 3 periods. The strength and conditioning program is based on the concept of periodization, with each cycle designed to gradually work toward bringing the athletes to a peak in power/endurance with the start of the in-season phase and then to maintain that peak for the duration of the competitive cycle.

Because of the high degree of specificity that exists in physical training, an emphasis is placed on closed kinetic chain multijoint exercises. The strength-training program is built around the use of Olympic-style exercises. These types of exercises have been shown to be very effective at increasing power (5), and they train movements that are specific to the sport of hockey (i.e., checking). Further, exercise selection, to a large degree, is based on the concept of training sport-specific movements, not muscle groups. That concept is more strictly adhered to as athletes progress through each training cycle.

Further, an emphasis is placed not just on developing strength, power, and endurance but also on improving athleticism through exercise selection and the implements used to perform those exercises, as will be explained.

Exercises are also selected based on the need to maintain muscular balance in opposing muscle groups and to help prevent injuries.

Off-season training begins in early April with a brief introduction cycle (Table 1). The athletes are coming off a 2- to 3-week period of no organized resistance training following completion of the competition cycle. Therefore, the purpose of the introductory cycle is to reintroduce the athletes to the demands of resistance training. Volume and intensity are both moderate, and exercise selection is kept fairly basic.

The following list provides further explanation of some of the abbreviations used in the workouts presented in the tables.

- TB: Total body; this is one of the Olympic-style lifts or related training exercise.
- CL: Core lift; this is a multi-joint exercise such as a squat.
- TL: Timed lift; the exercise is timed, meaning the athlete has to complete the required reps in a specified time period.
- AL: Auxiliary lift; this is a single-joint exercise such as a biceps curl.
- DB: Dumbbell; the exercise is performed with a dumbbell.
- WT: Weighted; the exercise involves external resistance to increase training intensity.
- MR: Manual resistance; this exercise uses a partner as the form of resistance
- MB: Medicine ball; the exercise is performed with a medicine ball.
- RDL: Romanian dead lift.
- FP: Field player.
- G: Goaltie.
- Alt: The exercise is performed alternating legs or alternating arms.
Athletes lift 3 days per week. The sequence of the workout is organized so that the athletes always perform the total body (Olympic-style exercises) first, because of the highly technical nature of these exercises and the need for speed and power when performing these types of exercises. Following that, the exercises involving the largest muscle group (other than the total body exercises, such as squats or bench press) are performed second because of their high energy requirements. The trunk is always performed in the middle of the workout so that the athletes will train the area with the necessary intensity and enthusiasm (3). The smaller muscle group exercises (i.e., arms, neck) are performed last because of the reduced need for energy when performing these types of exercises.

Following this brief introductory cycle is a 4-week hypertrophy cycle (Table 2). The purpose of this cycle is to increase muscle mass prior to initiating 2 consecutive strength cycles. Because there is a positive relationship between the size of the muscle and the force it can generate, it makes sense to have the athletes participate in hypertrophy training before beginning the strength cycles (2).

As stated, the goal of this cycle is to increase muscle mass. To help accomplish this goal, a number of training variables can be manipulated, including:

- The intensity guideline is important. Athletes select the resistance to be used in each exercise based on their ability to complete the required number of repetitions. During the introduction and hypertrophy
cycles, they are instructed to select a resistance that allows completion of the full number of required repetitions on each set to ensure a higher volume of training.

- The pace or speed of movement is important. Training speed is purposefully slowed down to extend the duration of the training stimulus and to eliminate any momentum that might reduce training intensity.
- Rest periods are reduced. Short rest periods, combined with high-repetition training, have a positive effect on levels of testosterone and human growth hormone, both of which are important in muscle hypertrophy.
- Repetitions are increased. The number of required repetitions is increased, because of the positive effects on levels of testosterone and human growth hormone.
growth hormone just mentioned.
• Training protocol is adjusted. To further stimulate muscle hypertrophy, supersets are performed during this cycle. Supersetting is a technique frequently used in bodybuilding in which 2 exercises for the same muscle group are performed back to back without rest.
• Manual resistance training is emphasized. Each Friday during the hypertrophy cycle a majority of the workout is made up of manual resistance exercises. Manual resistance training is a high-intensity, very slow method of training that is effective when the goal of training is hypertrophy. Following the hypertrophy cycle are 2 consecutive strength cycles (Tables 3 and 4). The purpose of these 2 strength cycles is to maximize strength levels prior to initiating the 2 power cycles that are used to bring the athletes to a peak prior to beginning the in-season cycle. This is important because of the positive effect strength has on the ability to generate high power outputs (4).

To help change the emphasis from increases in hypertrophy to increases in strength, a number of program variables can be manipulated.
• The intensity guideline is adjusted. Rather than selecting a resistance that allows comple-
tion of the full number of repetitions on each set, the athletes now select a resistance that will allow completion of the full number of repetitions on the first set only. By not having to complete the full number of repetitions on each set, the athletes are able to train with greater intensity.

- The pace or speed of movement is increased. Prescribing a faster training speed allows the athletes to train with greater resistance on the bar. Attempting to move a heavy resistance at a purposefully slow movement speed can have the effect of forcing the athlete to train with less resistance.
- Rest periods are extended to allow greater recovery time between sets and exercises. The more fully the athlete recovers, the greater his or her training intensity will be.
- The number of required repetitions is reduced. Obviously, as the number of repetitions the athlete has to perform decreases, the amount of resistance that can be used will increase.

Another variable that is adjusted as the in-season phase draws nearer is exercise selection. Resistance training is movement specific. That is, increases in strength are specific to the movement pattern used during training. Although non–movement-specific exercises (i.e., dumbbell...
incline flys) may be appropriate early in the off-season, as the competitive phase draws nearer it makes sense to select exercises that will result in increases in strength and power in movement patterns that are specific to the sport (i.e., keg walking lunge).

Using water-filled kegs as a form of resistance is emphasized in our hockey resistance training program. Because of the water movement that occurs when performing resistance exercises with a keg, the athlete trains against a “live” resistance rather than the static resistance that a typical barbell or dumbbell provides. We believe that this provides the athlete a more sport-specific training method. Our other alternative form of resistance used by our hockey athletes is a large tractor tire (Figure), modified so that the athletes can attach weights to the center of the tire to allow the resistance to be varied based on individual strength levels. The athletes are allowed to select the tractor tire as the form of resistance when performing cleans.

The advantage of performing cleans with the tire, in addition to providing greater variability to prevent the program from becoming monotonous, is that there is less technique required and so a greater emphasis can be placed on speed of movement.

Another training method introduced during the first strength cycle is plyometrics. Hockey is a game in which quick, explosive movements are critical to success, and plyometric training can address these needs. During the summer (May 28–August 12) plyometric training is performed on nonlifting days. Beginning August 13, plyometric training is performed on lifting days but prior to any resistance training. Finally, beginning with the first in-season cycle and continuing during the competitive phase, plyometric training is complexed with resistance training. This sequence is followed to provide a less stressful introduction to plyometric training, followed by a gradual progression to complex training. The plyometric drills used during training are not included in this article because of space constraints.

The value of complex training as used in this program is that it forces the athlete to train in a way that mimics the demands of competition. In hockey, the athlete must be able to move explosively in a fatigued state (i.e., at the end of his or her shift). In complex training the athlete performs a resistance training activity and then moves immediately into a plyometric training activity. The resistance training activity fatigues the athlete, and then the athlete must move explosively when performing the plyometric drill.

Hockey is a game in which power is a much more important performance component than strength. However, because of the demands of the sport, increasing endurance must also be addressed. Following the 2 cycles designed to bring strength levels to a maximum are 2 consecutive cycles intended to bring power and endurance to a peak (Tables 5 and 6).

There are distinct differences between the physiological demands of the sport for field players and goalies. Although power is still a key component for field players, the ability to sustain those powerful movements over the duration of the competition is a significant challenge, so muscular endurance also becomes a key component to success. Contrast ed to this, the endurance demands on the goalies are much less significant. These 2 power cycles can be manipulated to meet the specific needs of each position. To meet these distinct position-specific demands, the following variables are manipulated based on position played:

- Rest times are significantly shorter for the field players than for the goalies. These shorter rest times between...
Sets/reps:

<table>
<thead>
<tr>
<th>Sets/reps</th>
<th>Lower body</th>
<th>Upper body</th>
<th>Goalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 9–July 15:</td>
<td>TB = 5 × 3</td>
<td>TL = 4 × 8</td>
<td>TB = 6 × 2</td>
</tr>
<tr>
<td>July 16–July 22:</td>
<td>TB = 5 × 5 (45%)</td>
<td>TL = 4 × 10@16s(1.6)</td>
<td>TL = 4 × 8@13s(1.6)</td>
</tr>
<tr>
<td>July 23–July 29:</td>
<td>TB = 5 × 3 (50%)</td>
<td>TL = 4 × 8@11s(1.4)</td>
<td>TL = 4 × 5@7s(1.4)</td>
</tr>
<tr>
<td>July 30–Aug 5:</td>
<td>TB = 5 × 5 (45%)</td>
<td>TL = 4 × 10@16s(1.6)</td>
<td>TL = 4 × 8@13s(1.6)</td>
</tr>
<tr>
<td>Aug 6–Aug 12:</td>
<td>TB = 5 × 3</td>
<td>TL = 4 × 8</td>
<td>TB = 6 × 2 (40%)</td>
</tr>
</tbody>
</table>

Monday

Total body
Hang squat clean/split alt ft jerk (FP)
Hang squat cleans (G)

Lower body
Squats TL
DB X-over step-up/X-off TL
60-second stabilization

Trunk
MB dec 2-ball twist 3 × 20
Keg twist lift 3 × 15
WT 1-leg glute ham 3 × 15

Upper back
Seated row TL

Neck
MR lat flex 2 × 8

Wednesday

Total body
DB squeat/alt ft jerk TB (FP)
DB split alt ft jerks TB (G)

Lower body
DB keg alt incline press CL

Trunk
MB 1-leg speed rotation 3 × 20
WT 1-leg twist glute ham 3 × 15

Shoulders
DB/keg alt shoulder press

Neck
MR flex/ext 2 × 8

Friday

Total body
Hang squeat alt clean/jerk TB (FP)
Hang squeat alt clean TB (G)

Lower body
Keg 1-leg squats TL
Keg walking hockey lunge TL

Trunk
1-leg MB wood chop 3 × 20
WT V-ups with MB 3 × 20

Upper body
Bench press TL
MR upright row 2 × 8

TB = total body, CL = core lift, TL = timed lift, DB = dumbbell, WT = weighted, MR = manual resistance, MB = medicine ball, FP = field player, G = goalie, alt = alternating legs or alternating arms, ext = extension, lat = lateral, ft = foot, dec = decline. In, for example, “TL = 4 × 10@16s(1.6),” athlete is performing 4 sets of 10 repetitions and has 16 seconds to complete the set, or 1.6 seconds per repetition.

sets and exercises assist in developing the desired muscular endurance in the field players. In contrast, the longer rest times used by the goalies allow a greater emphasis on speed and power.

- The number of sets and repetitions performed varies by position. Goalies perform an additional total body set because of the positive effect these types of lifts have on power. Field players perform a higher number of repetitions on all exercises to assist in the development of muscular endurance. During plyometric training, field players perform additional repetitions as compared to the goalies for the same reason.
Table 6
Endurance/Power Cycle

Dates: August 13–September 16
Cycle: Endurance/power
Goal: Increase endurance and power, because of the positive relationship between endurance, power, and performance.
Length: 6 weeks
Intensity: On total body lifts, complete the full number of required repetitions on the first set only prior to increasing resistance. On timed lifts, complete the full number of required repetitions on each set prior to increasing resistance.
Pace: Total body lifts are performed as explosively as possible. On timed lifts, complete the full number of required repetitions on each set in the specified time period prior to increasing resistance.
Rest: Field players: 1:30 between total body exercises, 1:00 between all other exercises. Goalies: 2:30 between total body exercises, 2:00 between all other exercises.

<table>
<thead>
<tr>
<th>Sets/reps</th>
<th>Lower body</th>
<th>Upper body</th>
<th>Goalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 13–Aug 19: TB = 4 × 6</td>
<td>TL = 4 × 20</td>
<td>TL = 4 × 12</td>
<td>TB = 5 × 4</td>
</tr>
<tr>
<td>Aug 20–Aug 22: TB = 4 × 4 (40%)</td>
<td>TL = 4 × 18@27s(1.5)</td>
<td>TL = 4 × 8@12s(1.5)</td>
<td>TL = 4 × 7@8s(1.2)</td>
</tr>
<tr>
<td>Aug 23–Aug 26: TB = 4 × 6</td>
<td>TL = 4 × 20</td>
<td>TL = 4 × 12</td>
<td>TB = 5 × 2 (35%)</td>
</tr>
<tr>
<td>Aug 27–Sept 2: TB = 4 × 4 (40%)</td>
<td>TL = 4 × 18@27s(1.5)</td>
<td>TL = 4 × 8@12s(1.5)</td>
<td>TB = 5 × 4 (30%)</td>
</tr>
<tr>
<td>Sept 3–Sept 9: TB = 4 × 6</td>
<td>TL = 4 × 20</td>
<td>TL = 4 × 12</td>
<td>TB = 5 × 2 (35%)</td>
</tr>
<tr>
<td>Sept 10–Sept 16: TB = 4 × 4 (40%)</td>
<td>TL = 4 × 18@27s(1.5)</td>
<td>TL = 4 × 8@12s(1.5)</td>
<td>TB = 5 × 4 (30%)</td>
</tr>
</tbody>
</table>

Monday
Plyometrics
Lateral cone hops (3 cones) 3 × 6/8
Box-to-box jumps (3 boxes) 3 × 6/8
Forward stand twist throw 3 × 6/8

Total body
Hang squat alt clean/jerk TB (FP)
Hang squat alt cleans TB (G)

Lower body
Jump squat TL
DB keg walking side lunge TL
60-second stabilization

Trunk
MB dec 1-arm twist throw 3 × 20
MB reverse back ext 3 × 15

Upper back
Pull-downs TL

Neck
MR flex/ext 2 × 8

Wednesday
Plyometrics
Lateral cone hops (3 cones) 3 × 6/8
Box-to-box jumps (3 boxes) 3 × 6/8
Forward stand twist throw 3 × 6/8

Total body
DB hang alt ft snatch TB (FP)
DB alt ft snatch balance TB (G)

Lower body
DB keg alt bench press TL
DB keg alt shoulder press TL

Trunk
MB 1-leg off-center rotation 3 × 20
WT reverse back exts 3 × 20

Upper back
Seated row TL

Neck
MR lat flex 2 × 8

Friday
Total body
Hang squat clean/squat (FP)
Hang squat cleans TB (G)

Lower body
DB 1-leg squats TL
DB keg walk hockey lunge TL

Trunk
WT dec partner twist 3 × 20

Upper back
Bench press TL
Incline press TL

TB = total body, TL = timed lift, DB = dumbbell, WT = weighted, MR = manual resistance, MB = medicine ball, FP = field player, G = goalie, alt = alternating legs or alternating arms, ext = extension, lat = lateral, ft = foot, dec = decline. In, for example, “TL = 4 × 18@27s(1.5),” athlete is performing 4 sets of 18 repetitions and has 27 seconds to complete each set, or 1.5 seconds per repetition.
Table 7
Competition Cycle 1: Field Players

Dates: Sept 24–Nov 4

Cycle: Competition 1: field players

Goal: Increase power and endurance, because of the positive relationship between power, endurance, and performance.

Length: 6 weeks

Intensity: On total body lifts, complete the full number of required repetitions on the first set only prior to increasing resistance. On other exercises, complete the full number of required repetitions on each set prior to increasing resistance.

Pace: Total body lifts performed as explosively as possible. On other exercises, attempt to lift the resistance as quickly as possible.

Rest: 1:30 between total body exercises, 1:00 between all other exercises.

Monday

Sets/reps:

<table>
<thead>
<tr>
<th>Dates</th>
<th>Lower body</th>
<th>Upper body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 24–Sept 30: TB = 3 × 4</td>
<td>CL = 3 × 10</td>
<td>CL = 3 × 8</td>
</tr>
<tr>
<td>Oct 1–Oct 7: TB = 3 × 6</td>
<td>CL = 3 × 8</td>
<td>CL = 3 × 6</td>
</tr>
<tr>
<td>Oct 8–Oct 14: TB = 3 × 4</td>
<td>CL = 3 × 10</td>
<td>CL = 3 × 8</td>
</tr>
<tr>
<td>Oct 15–Oct 21: TB = 3 × 6</td>
<td>CL = 3 × 8</td>
<td>CL = 3 × 6</td>
</tr>
<tr>
<td>Oct 22–Oct 28: TB = 3 × 4</td>
<td>CL = 3 × 10</td>
<td>CL = 3 × 8</td>
</tr>
<tr>
<td>Oct 29–Nov 4: TB = 3 × 6</td>
<td>CL = 3 × 8</td>
<td>CL = 3 × 8</td>
</tr>
</tbody>
</table>

Wednesday

Sets/reps:

<table>
<thead>
<tr>
<th>Dates</th>
<th>Lower body</th>
<th>Upper body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 24–Sept 30: TB = 3 × 6</td>
<td>TL = 3 × 18@29s(1.6)</td>
<td>TL = 3 × 6@10s(1.6)</td>
</tr>
<tr>
<td>Oct 1–Oct 7: TB = 3 × 4 (55%)</td>
<td>TL = 3 × 15@21s(1.4)</td>
<td>TL = 3 × 8@11s(1.4)</td>
</tr>
<tr>
<td>Oct 8–Oct 14: TB = 3 × 6 (45%)</td>
<td>TL = 3 × 18@29s(1.6)</td>
<td>TL = 3 × 6@10s(1.6)</td>
</tr>
<tr>
<td>Oct 15–Oct 21: TB = 3 × 4 (55%)</td>
<td>TL = 3 × 15@21s(1.4)</td>
<td>TL = 3 × 8@11s(1.4)</td>
</tr>
<tr>
<td>Oct 22–Oct 28: TB = 3 × 6 (45%)</td>
<td>TL = 8 × 18@29s(1.6)</td>
<td>TL = 3 × 6@10s(1.6)</td>
</tr>
<tr>
<td>Oct 29–Nov 4: TB = 3 × 4 (55%)</td>
<td>TL = 3 × 15@21s(1.4)</td>
<td>TL = 3 × 8@11s(1.4)</td>
</tr>
</tbody>
</table>

Monday

Total body

Hang squat clean/alt ft jerk TB

Complex:

Lat box jumps (1 box) 3 × 6

Lower body

Squats/keg/log CL

Complex:

Barrier jump (3 boxes) 3 × 6

60-second stabilization 1 × 60 seconds

Trunk

1-leg ankle chop/twist 3 × 15

WT 1-leg back ext 3 × 8

Upper body

Bench press/keg/log CL

Neck

MR flex/ext 2 × 8

Wednesday

Total body

DB squat alt ft alt jerk TB

Lower body

DB/keg/log hockey lunge TL

Trunk

MB dec 1-arm throw 3 × 15

Keg twist lift 3 × 10

Upper body

DB/keg/log incline press TL

Neck

MR lat flex 2 × 8

TB = total body, CL = core lift, TL = timed lift, DB = dumbbell, WT = weighted, MR = manual resistance, MB = medicine ball, alt = alternating legs or alternating arms, ext = extension, lat = lateral, ft = foot, dec = decline.
Table 8
Competition Cycle 1: Goalies

Dates: Sept 24–Nov 4
Cycle: Competition 1: goalies
Goal: Increase power and endurance, because of the positive relationship between power, endurance, and performance.
Length: 6 weeks
Intensity: On total body lifts, complete the full number of required repetitions on the first set only prior to increasing resistance. On timed lifts, complete the full number of required repetitions on each set prior to increasing resistance.
Pace: Total body lifts performed as explosively as possible. On timed lifts, complete the full number of required repetitions on each set in the specified time period prior to increasing resistance.
Rest: 2:00 between all exercises.

Sets/reps:
- Sept 24–Sept 30: TB = 3 × 4, TL = 3 × 3
- Oct 1–Oct 7: TB = 3 × 2@45%, TL = 3 × 5
- Oct 8–Oct 14: TB = 3 × 4@35%, TL = 3 × 3
- Oct 15–Oct 21: TB = 3 × 2@45%, TL = 3 × 5
- Oct 22–Oct 28: TB = 3 × 4@35%, TL = 3 × 3
- Oct 29–Nov 4: TB = 3 × 2@45%, TL = 3 × 5

Monday

Plyometrics
- Slide board/catch 3 × 6
- DJ/lateral slide/catch 3 × 6

Total body
- DB split alt ft alt snatch TB

Lower body
- Squat/keg/log TL
- Lat box jump 3 × 6

Trunk
- 1-leg ankle chop/twist 3 × 10

Upper body
- DB alt incline TL

Wednesday

Plyometrics
- Slide board/catch 3 × 6
- DJ/lateral slide/catch 3 × 6

Total body
- Hang squat clean TB

Lower body
- Keg/log/hockey lunge TL

Trunk
- MB dec 1-arm throw 3 × 10
- Keg twist lift 3 × 8

Upper body
- Seated row TL

TB = total body, TL = timed lift, DJ = drop jump, DB = dumbbell, MB = medicine ball, alt = alternating legs or alternating arms, ft = foot, dec = decline.

- For field players the number of repetitions performed is adjusted depending on whether the exercise is a lower-body or upper-body exercise. Muscular endurance demands are much greater in the lower body than in the upper body for these athletes, and program design should reflect these differences.

- Exercise selection is also manipulated by position with the Olympic-style exercises. Field players perform a compound movement (i.e., clean and jerk) to place a greater emphasis on muscular endurance.

- The number of repetitions performed varies for field players based on the area of the body being trained. As can be seen in Tables 7 and 8, a higher number of repetitions are performed during lower-body training because of the higher endurance demands in the lower body.

Two other program variables are introduced during the power cycles. First, percentages are assigned to the Olympic-style exercises. These lower percentages
allow for higher-speed training, which is critical when the goal of training is power development (1). Goalies are assigned a lower percentage than are field players to allow a greater emphasis on speed of movement.

Timed exercises are also introduced during the power cycles. Timed exercises are used to shift the emphasis from how much resistance the athlete can lift to how quickly the athlete can lift the resistance. This is important because of the effect speed of movement has on developing high-speed strength (1). During a timed exercise, the athlete selects as heavy a resistance as possible that allows completion of the full number of required repetitions in good form in the specified time period. Again, this shifts the emphasis from how much resistance can be lifted to how quickly the resistance can be lifted.

It should be noted that with the start of the semester in early August, the freshmen begin lifting with the upperclassmen. However, because they have not had the opportunity to physically prepare for the demands of the workout of upperclassmen, they train using a less demanding, more basic workout.

Following the endurance/power cycle the in-season cycles begin with the start of practice. The purpose of these in-season cycles is to maintain or increase levels of strength, power, and endurance achieved during the off-season (Tables 7 and 8).

Power is the result of 2 factors, force and speed of movement. Because of this, the in-season cycles are designed to address both of these components. Monday is a strength/endurance day. The emphasis is on the moderate repetition, high-intensity training needed to increase strength and muscular endurance. In contrast, Wednesday is a speed day, making use of the percentage lifts and timed exercises previously discussed. This protocol allows the athletes to focus on both components making up power. The volume of training in-season is reduced to reduce the demands of training. In contrast, the intensity of training is maintained at a high level because of the important role intensity has on maintaining and increasing strength levels.

For the field players, plyometrics are performed only on Monday, even though Monday is used as a strength day. Field players do no plyometrics on Wednesday in-season. Because game days are typically Friday and Saturday, we want to assist the players in being fully recovered going into each weekend series.

Hockey is a high-speed physical game. The strength and conditioning program for hockey at the U.S. Air Force Academy is designed to physically prepare athletes for these demands using a variety of training methods. Although not every aspect of this training program can be integrated into your own training program, it is hoped that portions of this training plan can be adapted to further improve existing programs.

References

Allen Hedrick, MA, CSCS, *D is head strength and conditioning coach at the U.S. Air Force Academy. In addition to working with ice hockey, he is also responsible for program development for football, volleyball, and men’s soccer. Prior to being hired at the Air Force Academy, Hedrick was strength and conditioning coordinator at the U.S. Olympic Training Center in Colorado Springs, CO.