NATIONAL CONFERENCE & EXHIBITION

NATIONAL

JULY 6 - 9, 2016 • NEW ORLEANS, LA • HYATT REGENCY

BRIDGING THE GAP

NSCA.COM/NATCON2016
Loading Zones: Implications for Strength and Hypertrophy
Intensity of Load Basics

- Expressed as a percentage of 1RM for a given exercise
- Easiest application is to a “repetition range”
 - Heavy loading: 1-5 RM (~87-100% 1RM)
 - Moderate loading: 6-12 RM (65-85% 1RM)
 - Low loading: 15+ RM (<60% 1RM)
The Strength-Endurance Continuum
Literature Summary

- Good evidence that muscular strength and endurance exist at opposite ends of the continuum.
- Studies to date are conflicting as to whether an optimal hypertrophy range exists
 - Conclusions limited by a paucity of research in resistance-trained subjects
 - Differences in training volume can confound results
Effects of Different Volume-Equated Resistance Training Loading Strategies on Muscular Adaptations in Well-Trained Men

Brad J. Schoenfeld,1,2 Nicholas A. Ratamess,3 Mark D. Peterson,3 Bret Contreras,4 G. T. Sonmez,1 and Brent A. Alvar2

1Department of Health Sciences, CUNY Lehman College, Bronx, New York; 2Rocky Mountain University of Health Professionals, Provo, Utah; 3Department of Health and Exercise Science, The College of New Jersey, Ewing, New Jersey; 4Sport Performance Research Institute New Zealand, AUT University, Auckland, New Zealand; and 5Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan

- 17 resistance-trained men (over 4 years experience) randomly assigned to either:
 - Bodybuilding group - 3 sets of ~10RM using split routine with 90 sec rest intervals
 - Powerlifting group - 7 sets of ~3RM using total body routine with 3 min rest intervals
- Volume load equated been groups
- Training carried out 3 days/week for 8 weeks
Hypertrophy Findings

• Similar increases in thickness of biceps and quadriceps from pre- to post-testing for both HT and ST (12.6 and 12.7%, respectively).
Results for Strength

- After adjusting for baseline values, increases in 1RM BP significantly greater for ST versus HT and a trend for greater increases in 1RM BS noted in favor of ST versus HT.
Perspective on Findings

- Findings suggest that hypertrophy can be equally achieved either through heavy or moderate loading provided volume load is equated in well-trained subjects
 - Supports a dose-response relationship for hypertrophy
Beyond the Numbers

- Continued heavy loading seems to increase the potential for injury
 - 2 subjects pulled out because of injury and several others complained of “sore joints” on exit interview
- The bodybuilding-type routine took about ¼ as much time to complete with similar results for hypertrophy
 - Capacity to increase volume and potentially improve gains
- Those in ST group generally felt highly fatigued from the workouts; those in the HT group did not
 - HT potentially could have endured additional volume.
Other Studies Equating Volume

• Similar hypertrophy increases in quads and pectorals shown by Klemp et al (2016) in a cohort of 16 resistance-trained males using 8-12RM vs 2-6RM

Reconciling Volume Equated Data

• Hypertrophy-related improvements in experienced lifters appear to be similar at the lower end of the strength-endurance continuum when volume is equated
 – Either heavy or moderate loads can be employed to promote hypertrophic increases given equated volume loads
 – The greater efficiency for bodybuilding-type training makes it a more attractive option for many individuals
 – The shorter workout duration and less fatigue in bodybuilding-type routines may allow for additional volume and thus greater overall gains
What About Non-Equated Volume?
• 29 resistance trained men assigned to either a 4 x 10-12RM or 4 x 3-5RM for 8 weeks
 – 1 min rest for moderate rep; 3 mins rest for low rep
• Greater increases in lean arm mass in low rep group and greater percentage of subjects exceeded minimum difference for arm and leg mass, and VL muscle thickness
• 1RM bench increases greater for low rep; no differences in 1RM squat
New Study from Our Lab!

- Schoenfeld et al (in review) investigated 3 x 2-4 versus 3 x 8-12
 - Significantly greater increases in vastus lateralis thickness seen for moderate; ES favored moderate for elbow flexor thickness
 - 1RM squat significantly greater for low rep and ES favored low for 1RM bench
Reconciling Non-Equated Volume Data

- Differences between studies could be due to short rest intervals for moderate rep condition in Mangine et al.
- Jury still out
What About Low Loads?

• Current guidelines state loads of ≥65% 1RM are necessary to elicit favorable increases in hypertrophy.

• Postulated that heavy loading is required to fully recruit higher threshold motor units.
Key Point!

- Maximal muscle growth is predicated on recruiting as many MUs as possible in the target muscles and achieving high firing rates in these MUs for a sufficient length of time to fully stimulate the fibers.
Fiber Types 101

• Type I - “Endurance-related”
 – ~50% of fibers in an average muscle
 – Peak tension in 110 ms (slow twitch)

• Type II – “Strength-related”
 – Peak tension in 50 ms (fast twitch)
 – Type IIa (~25% of fibers in an average muscle)
 – Type IIx (~25% of fibers in an average muscle)
MHC Fiber Continuum

MHC Fiber Type Continuum

I I/IIa IIa IIa/x IIx

Slow Fast

Oxidative Glycolytic
Fiber Type Proportions in Humans

- Each person has different fiber type ratios
- Arm and thigh ratios are similar in one person
 - Endurance athlete: type I predominates
 - Power athlete: type II predominates
- Can be specific to a given muscle
 - Soleus: high proportion of type I in almost everyone
Colin Jackson vs. Other Sprinters
Hypertrophy in Fiber Types

- Both type I (slow twitch) fibers and type II (fast twitch) fibers have the ability to hypertrophy.
- Research shows that the growth capacity of fast twitch fibers is approximately 50% greater than that of slow twitch fibers.
Training Specificity and Hypertrophy

- Findings of hypertrophic superiority of type II muscle fibers are specific to training intensities at which study is performed (>60% 1RM)
 - Superior capacity for growth may be more a consequence of the models in which we study them than an intrinsic property of the fiber itself.
- Bodybuilders display greater Type I fiber hypertrophy than powerlifters, presumably as a result of routinely training with higher repetition ranges.
Basics of Fiber Recruitment

- Recruit minimum number of motor units needed
 - Smallest (type I) motor units recruited first
 - Midsized (type IIa) motor units recruited next
 - Largest (type IIx) motor units recruited last
- Recruited in same order each time
- Size principle: order of recruitment of motor units directly related to size of \(\alpha \)-motor neuron
Size Principle Illustrated
The Role of Fatigue in Recruitment

- Often claimed that only high intensity or power training recruits the highest threshold MUs
- Discounts the role of fatigue in the stimulation of hypertrophy, and its ability to influence motor unit recruitment.
 - As fatigue increases in a low-load set, recruitment threshold of higher threshold MUs is progressively reduced
 - Provides a mechanism whereby low-load strength training can activate fast-twitch motor units and ultimately, stimulate the growth of these fibers.
Recruitment in Low Load Training

• Cook et al. found that EMG amplitude of the quadriceps during knee extension exercise to failure was significantly greater at a high intensity (70% 1RM) than at low intensity (20% 1RM).

• Wernbom et al. showed similar EMG activity in low-load training vs. BFR at 30% 1RM
 – Suga et al. found BFR at 30% did not achieve extent of recruitment seen at high-intensities
Muscle activation during low- versus high-load resistance training in well-trained men

Brad J. Schoenfeld · Bret Contreras · Jeffrey M. Willardson · Fabio Fontana · Gul Tiryaki-Sommez

- 12 young men experienced in resistance training
- Performed leg press at 75% and 30% 1RM to muscular failure
- Evaluated quads and hamstrings activity by EMG testing
What We Found

• Markedly greater activation seen during heavy load training compared to using light loads
 – ~35% greater mean activation of VM
 – ~54% greater mean activation of VL
 – ~68% greater mean activation of RF
 – ~131% greater mean activation of BF
Example of EMG Tracing
EMG amplitude remained greater at 80 % vs 30 % 1RM

- mCSA increased more from pre- to post-exercise for 30 % than 80 % 1RM
 - Mechanism for growth response due to cell swelling?
Follow Up Activation Study

Upper body muscle activation during low-versus high-load resistance exercise in the bench press

Brad J. Schoenfelda,*, Bret Contrerasb, Andrew D. Vigotskyc, Dan Ogbord, Fabio Fontanae and Gul Taryaki-Sonnex

aDepartment of Health Sciences, Program of Exercise Science, CUNY Lehman College, Bronx, NY, USA
bSport Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
cKinesiology Program, Arizona State University, Phoenix, AZ, USA
dSchool of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
eSchool of Health, Physical Education, and Leisure Services, University of Northern Iowa, Cedar Falls, IA, USA

• Bench press at 80% 1RM shows significantly greater mean EMG amplitude in the pec major compared to 50%
 – ~17% greater in sternal head
 – ~9% greater in clavicular head
• 15 men performed 3 sets to failure of dumbbell forearm flexion with 80% ($n = 8$) or 30% ($n = 7$) 1RM
• Results showed no significant differences in EMG amplitude between groups
• Findings suggest possible muscle specific differences in the responses to high- vs low-load RT.
• Absolute differences favored the heavier load condition and these differences magnified across sets

• Between-subject design compromised statistical power (n=15)
Key Points!

Activation is not just a function of recruitment, but also includes rate coding and other factors!

Activation studies do not necessarily reflect long-term muscular adaptations to RT!
Muscular adaptations in low- versus high-load resistance training: A meta-analysis

BRAD J. SCHOENFELD¹, JACOB M. WILSON², RYAN P. LOWERY², & JAMES W. KRIEGER³

¹Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA; ²Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, USA; ³Weightology LLC, Redmond, WA, USA

- Analysis comprised 191 subjects from 8 studies.
- Both high- and low-load training produced significant growth but there was a trend for greater growth with heavier loading.
Fiber Type Adaptations

There is some evidence that lower load training promotes greater hypertrophy of type I fibers while higher load training optimizes type II hypertrophy.

- Hypothetically increased time-under-tension is necessary to fully stimulate type I fibers.
- Higher loads may be necessary to fully stimulate fibers associated with the highest threshold MUs.

Bottom Line

• Substantial hypertrophy can be achieved with low load training provided it is carried out to muscular failure

• Emerging research indicates there is a fiber type specific response to training with low- vs. high loads
Caveat to the Meta-Analysis

• All previous studies were carried out in untrained subjects
The Study

EFFECTS OF LOW- VS. HIGH-LOAD RESISTANCE TRAINING ON MUSCLE STRENGTH AND HYPERTROPHY IN WELL-TRAINED MEN

Brad J. Schoenfeld,¹ Mark D. Peterson,² Dan Ogborn,³ Bret Contreras,⁴ and Gul T. Sonmez¹

¹Department of Health Sciences, CUNY Lehman College, Bronx, New York; ²Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan; ³Neuromuscular and Neurometabolic Unit, McMaster University Medical Center, Hamilton, Ontario, Canada; and ⁴Sport Performance Research Institute New Zealand, AUT University, Auckland, New Zealand

- 18 well-trained subjects (>3 years RT experience)
- Random assignment to either a ~10 RM or 30 RM group
- All subjects performed 3 sets of 7 different exercises for upper and lower body 3 days/week
- Training carried out over 8 weeks
Results

• Hypertrophy similar between groups:
 – Biceps brachii: 8.5% low vs. 5.2% high
 – Triceps brachii: 5.2% low vs. 6.0% high
 – Quadriceps femoris: 9.5% low vs. 9.3 high

• Strength:
 – 1RM bench press: 2% low vs. 6.5% high
 – 1RM squat: 8.7% vs. 19.6 high

• Muscular endurance:
 – 50% 1RM bench press to failure: 16.6% low
Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men

Robert W. Morton, Sara Yuriko Oikawa, Christopher G Wavell, Nicole Mazara, Chris McGlory, Joe Quadrilatero, Brittany L. Baechler, Steven K. Baker, Stuart M. Phillips

Journal of Applied Physiology Published 12 May 2016 Vol. no. , DOI: 10.1152/japplphysiol.00154.2016

- Recent study reports similar results
 - No differences in hypertrophy
 - Greater gains in maximal bench press strength for the heavy load condition
What About Combining Rep Ranges?
• 19 resistance-trained men randomly assigned to 1 of 2 experimental groups:
 – Constant-rep routine that trained using 8-12 RM per set
 – Varied-rep routine that trained with 2-4 RM per set on Day 1, 8-12 RM per set on Day 2, and 20-30 RM on Day 3 for 8 weeks.
Results

• No statistically significant differences found between conditions in any of the outcomes studied.
 – P-values favored the VARIED condition in several outcome measures showing likelihood of an effect.
 – Magnitude-based statistics indicated a benefit for VARIED for upper body hypertrophy, strength, and muscular endurance; no effect size differences noted for lower body outcomes.
Graded Response to Loading

CSA values for vastus lateralis pre, 6 weeks and post TF for the groups G20, G40, G60 and G80 (Mean±SD). * greater than the corresponding pre training values (p< 0.05). # greater than the corresponding post training groups values G20 (p< 0.05).
Graded Response to Loading

CSA values of elbow flexor pre, 6 weeks and post TF for the groups G20, G40, G60 and G80 (Mean±SD). * greater than the corresponding pre training values (p< 0.05). # greater than the corresponding post training groups values G20 (p< 0.05).
Practical Applications

- If goal is to maximize overall muscle mass, train across a wide spectrum of repetition ranges.
 - Higher intensity exercise appears necessary to fully stimulate fast-twitch fiber growth while lower intensity exercise preferentially enhances hypertrophy in slow-twitch fibers.
- If goal is to maximize strength, higher loads should be favored over lighter loads
 - Gains in strength are greater with high as compared to low load training even when a comparable hypertrophic response occurs.
“Light Weights” is a Relative Term!
Acknowledgements

Big thanks to Dymatize Nutrition for sponsoring my research without ever attaching any stipulations as to what I publish. They epitomize quality in sports supplementation.
Questions?

Thank you for coming!

I can be reached through my site:

www.lookgreatnaked.com