Application of Electromyography in Strength and Conditioning Research
Trent J. Herda, Ph.D.
Assistant Professor
Docking Faculty Scholar
Neuromechanics Laboratory – Director
Hawk Fitness Academy - Director
Dept. of Health, Sport and Exercise Sciences
University of Kansas

Electromyography in JSCR
- Journal of Strength and Conditioning Research
 - Pubmed.com
 - Searchable terms (2001 – current):
 - electromyography = 371 papers
 - EMG = 389 papers
 - 20 to 30 papers per year
Overview

- EMG hardware
- Motor units
- The EMG signal
- Study Design
- Interpretation

Technical sources:

EMG Acquisition Systems

- BIOPAC Systems
- Delsys
- iWorx
- National Instruments

EMG Electrodes
Motor Units

- Motor unit consists of a motor neuron in the ventral horn of the spinal cord or brain stem, its axon, and the muscle fibers it innervates.

Motor Unit Behavior

- The force exerted by a muscle during a contraction depends on the following:
 - The number of motor neurons that are activated.
 - The rates at which they discharge action potentials.
 - The force twitches of muscle fibers.

Motor Unit Behavior

- Cyclic dynamic contractions.
EMG Signal

- Represents the electrical activity generated in muscle fibers in response to the activation provided by motor neurons.
 - Bipolar (two electrodes) surface EMG contains information from overlapping action potentials from many MUs.
 - Source of information: the neural drive to the muscle provided by motor neurons and the electrical properties of the muscle fiber membranes.
 - Does not differentiate between MU recruitment and firing rate.
EMG Signal

• EMG recordings reflect extracellular field potentials.

• Action potential is generated for each muscle fiber of a MU.

EMG Signal

• Bipolar EMG provides information about the timing and intensity of muscle activation.
 – EMG decomposition techniques can provide information about the firing characteristics of single MUs.
 • Currently, EMG decomposition provides information from only isometric muscle actions.

EMG Signal

• Limitations (nonphysiological)
 – Amplitude cancellation

\[\begin{align*}
\text{A} & : \text{Cancellation} \\
\text{B} & : \text{No Cancellation}
\end{align*}\]
EMG Signal

- Limitations (nonphysiological)
 - Amplitude cancellation
 - Amplitude cancellation tends to reduce the contribution of individual or groups of MUs.
 - Despite a significant reduction in firing rates of lower-threshold MUs, EMG amplitude remained constant.

EMG Signal

- Limitations (nonphysiological)
 - Subcutaneous fat
 - Low-pass filter

EMG Signal

- Limitations (nonphysiological)
 - Unwanted signal content
 - Bandpass filter is typically applied to the signals.
 - Sampling frequency should be twice as high as the low-pass band frequency (500 Hz) to avoid aliasing.
 - Notch or band-stop filter can minimize a specific frequency (60 Hz).
 - Cross-talk
 - Influence of neighboring muscle on the EMG signal.
 - Double-differential signal can reduce cross-talk.
EMG Signal

- Limitations (physiological)
 - Distribution of conduction velocities.
 - Shape of intracellular action potentials.
 - Number and discharge rates of MUs.
 - Synchronization.

- Amplitude
 - Depends on the number of muscle fibers activated.
 - Not the number of MUs that were recruited.
 - Typically reported as a root mean square (RMS).
 - There are numerous ways to report amplitude of the EMG signal.
 - Need to rectify.

- Amplitude
 - Isometric contractions
 - Linear or a curvilinear relation between the rectified EMG and force.
 - Minimal changes in muscle length and when force is held constant.
EMG Signal

- Amplitude
 - Dynamic contractions
 - Relationship between muscle activation and force is minimized.
 - Non-stationarity of the signal
 - Shifts in position of electrodes relative to muscle fibers.
 - Changes in tissue conductivities.
 - Changes in MU activity.
 - It is possible that EMG amplitude can be unrelated to contraction intensity during a dynamic muscle action.

- Frequency spectrum
 - Influenced by
 - Action potential shapes.
 - MU firing rates.
 - Relative timing of the action potentials discharged by different MUs.
 - Typically reported as mean or median power frequency following a Fast Fourier Transformation.
 - Not sensitive to changes in power in small ranges.
 - Wavelet analysis with an intensity spectrum may be necessary to detect minor alterations in the frequency spectrum.
 - Understanding of the frequency spectrum is limited.

- Total intensity of 11 nonlinearly scaled Cauchy wavelets.
EMG and Strength and Conditioning

- What questions are we trying to answer by including EMG in our research?
- How can we minimize the limitations of the EMG signal?
- Are you interested in a discrete EMG value or the pattern of EMG values?

Study Design

- Dynamic muscle actions.
 - Limit confounding variables:
 - Standardized velocity?
 - Standardized position?
 - Standardized force?
 - Is the dynamic movement repeatable?
 - If the dynamic movement is not repeatable, the EMG value will not be meaningful.
Study Design

- Dynamic muscle actions.
 - Limit confounding variables.
 - Standardized velocity?
 - Standardized position?
 - Standardized force?

- Regardless of muscle action, cross-over design is preferred to test interventions.
 - Comparing EMG between groups is difficult because of potential differences in
 - subcutaneous fat.
 - MU distribution.
 - fiber pennation angle.
 - Subcutaneous fat at the site of the sensor should always be measured and reported.

- Training interventions.
 - Did EMG change as a function of subcutaneous fat?
- Muscle-related differences.
 - Is EMG different because subcutaneous fat overlying the muscle is different?
 - MU distribution different?
Study Design

- Helpful suggestions.
 - Normalize EMG to a maximal voluntary contraction.
 - Normalize EMG during dynamic movements to isometric muscle actions.
 - Minimizes the influence of EMG cancellation.
 - Reduces variability among subjects.
 - If possible, control for force regardless of muscle action.

Study Design

- Younger (YG) and older (AG) participants contracted at the same absolute submaximal force.
 - CC = contraction

Interpretation

- EMG amplitude
 - Muscle activation
 - Does not differentiate between firing rate and recruitment behavior.
 - Younger (YG) and older (OG) participants contracted at the same absolute submaximal force.
Interpretation

- **EMG amplitude**
 - Muscle activation
 - Can estimate timing and amplitude of muscle action.
 - EMG amplitude is strongly correlated with force.

Interpretation

- **EMG frequency**
 - Power spectrum has been reported to increase, not change, or decrease with an increase in muscle force.

Interpretation

- **EMG frequency**
 - May provide valuable information regarding muscle fatigue.
 - Decreases in action potential conduction velocity.
 - Changes in action potential shape.
 - Reduced relaxation rates of muscle.
 - Increased inorganic phosphate concentrations.
 - Decreased intramuscular pH.
 - Altered sarcolemmal ion gradients.
Interpretation

- EMG frequency
 - Traditional measures of EMG center frequency cannot distinguish
 - decreases in low-frequency power.
 - increases in high-frequency power.
 - or a combination of both.
- Salutation - Separate into
 - low-frequencies.
 - high-frequencies.

Questions?